

ISSN : 0975 - 9425

INDIAN JOURNAL OF ENVIRONMENTAL EDUCATION

INDIAN JOURNAL OF ENVIRONMENTAL EDUCATION

VOLUME 25, APRIL 2025

C.P.R. ENVIRONMENTAL EDUCATION CENTRE

1 Eldams Road, Alwarpet, Chennai - 600018.

www.cpreec.org / www.journalcpreec.in

INDIAN JOURNAL OF ENVIRONMENTAL EDUCATION

Indian Journal of Environmental Education is a peer-reviewed publication

EDITOR

Dr. Nanditha C. Krishna

Member Secretary, C.P.R. Environmental Education Centre, Chennai.

EDITORIAL COMMITTEE

Dr. Sultan Ahmed Ismail

Advisor, Eco Science Research Foundation, Chennai 600 041.

Dr. D. Narasimhan

Associate professor, (Retd.), Centre for Floristic Studies, Department of Botany, Madras Christian College, Tambaram East, Chennai - 600 059.

Prof. A. Alagappa Moses

Vice Principal (Aided), Associate Professor & Head, PG and Research Department of Environmental Sciences, Bishop Heber College (Autonomous), Tiruchirappalli 620 017.

Dr. Erach Bharucha

Director, Bharati Vidyapeeth Institute of Environment Education & Research, Pune.

The views expressed, authenticity of cited literature and originality of data appearing in the papers /articles are solely the responsibility of the author(s). The *Indian Journal of Environmental Education* published by C.P.R. Environmental Education Centre, Chennai, and its Editor(s) solely or collectively shall not be held responsible for issues relating to any paper / article, including plagiarism.

Indian Journal of Environmental Education is published annually by

C.P.R. ENVIRONMENTAL EDUCATION CENTRE

1, Eldams Road, Alwarpet, Chennai - 600018.

Phone: 044-48529990 / 42081758

E.mail: cpreec@gmail.com

Websites: www.cpreec.org / www.journalcpreec.in
<https://eiacp.moef.gov.in/drc/eiacp/centre/CPREEC>

Contents

VOLUME - 25

Comparing Knowledge-Attitude-Practices (KAP) of Waste Management among students of rural and urban Halol, Gujarat	5
<i>Astha Garg</i>	
Global classrooms in India: the rise of foreign universities	20
<i>Dr. Kandi Kamala</i>	
A social learning theory-based learning intervention to promote sustainable Waste Management behaviour among students	33
<i>Astha Garg</i>	
Environment protection and Conservation – the role of religions and its rituals an Indian Scenario	47
<i>Dr. Ganga .G</i>	

Comparing Knowledge-Attitude-Practices (KAP) of Waste Management among students of rural and urban Halol, Gujarat

Astha Garg*

Abstract

Purpose: This study aims to assess the knowledge, attitudes and practices (KAP) regarding waste management among middle-stage students (6th to 8th grade) in rural and urban schools of Halol, Gujarat and to examine the influence of demographic variables on these domains.

Methods: A descriptive research design was employed, using a multistage sampling approach to select 678 students from six purposively chosen schools (three urban, three rural). A structured questionnaire validated through pilot testing and expert consultation assessed knowledge (85 statements), attitudes (25 statements) and practices (18 questions) related to solid waste management. Data were analysed using descriptive and inferential statistics with IBM SPSS version 20.

Results: Urban students demonstrated significantly higher knowledge ($M=37.25$, $SD=11.76$) and better practices ($M=47.60$, $SD=11.27$) compared to rural students (Knowledge: $M=26.89$, $SD=7.72$; Practice: $M=41.60$, $SD=6.46$), with large and small effect sizes, respectively. Attitude scores were similar across groups (Urban: $M=53.98$, $SD=5.15$; Rural: $M=52.03$, $SD=4.01$). Females exhibited more positive attitudes ($p=0.006$) and better practices ($p<0.001$) than males. Knowledge and practices improved with age and academic level, but attitudes remained unchanged. Weak positive correlations were found between knowledge and attitude ($r=0.103$, $p=0.007$) and between knowledge and practice ($r=0.250$, $p<0.001$).

Conclusion: This study reveals significant urban-rural disparities in knowledge and practices, influenced by gender, age and gender. Targeted educational interventions are needed to bridge these gaps, particularly in rural schools, to foster sustainable waste-management behaviour.

Keywords: Environmental Education, KAP, middle-stage, rural, urban, waste management.

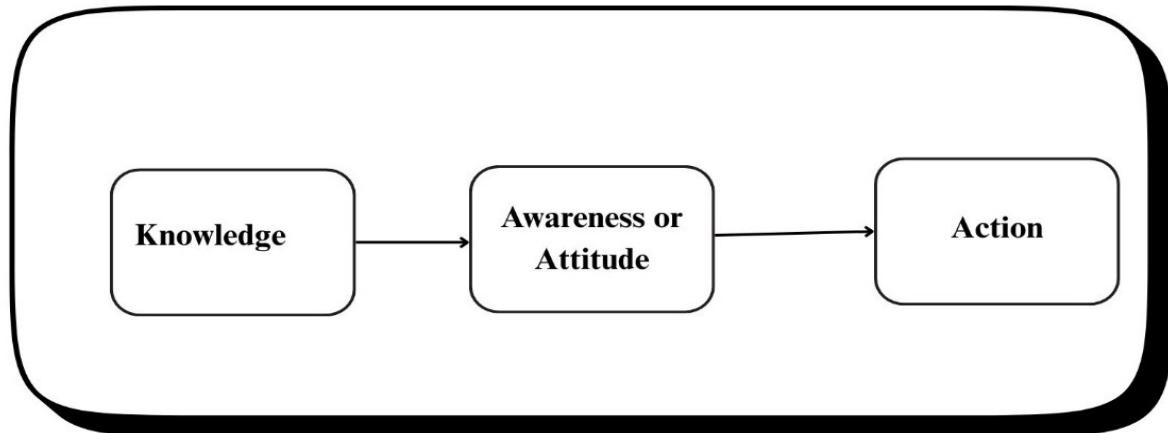
* Ph.D. Scholar, The Maharaja Sayajirao University of Baroda, SD girls hall, Vadodara
Email : garg.astha1022@gmail.com

Introduction

Environmental education is critical for fostering awareness and shaping students' perspectives toward sustainable development. Schools play a pivotal role in promoting eco-conscious behaviours from an early age, contributing significantly to building a sustainable future. Conservation, resource management and environmental stewardship ideals are instilled when sustainability is incorporated into the school curriculum. Teaching students sustainable living practices that prioritize recycling, resource reuse and waste reduction is a helpful solution.

Schools must set an example of sustainable behaviour by implementing trash reduction plans, renewable energy systems and cycling efforts. In summary, integrating environmental education into the curriculum at the school level prepares students to be responsible citizens. By encouraging environmental awareness, schools can equip the next generation to tackle urgent ecological issues and help create healthier and greener worlds. Students who receive a sustainable education are better equipped to make thoughtful decisions that support the long-term health of the environment (Chopra, 2024).

Theoretical framework: the knowledge, attitude and practice (KAP) model


The KAP model is based on learning theory (Bandura, 1976) and the diffusion of innovation theory (Rogers, 1995).

Rogers asserts that a social system's members gradually embrace innovation through four stages. The stages include knowledge acquisition, persuasion, decision-making and confirmation. Furthermore, (Bandura, 1976) proposed that the social context is the source of individual behaviour learning (Ajzen's, 1991). Theory of planned behaviour offers a framework for comprehending the connection between behavioural intention and attitudes and is another viewpoint used to examine behaviour changes.

The KAP model, developed and widely used as a survey tool in social research, has its roots in family planning and population studies from the 1950s. It can be used to evaluate the relationship between knowledge, attitudes and practices (Ahmad et al., 2015). A structured questionnaire known as the KAP model was used to quantify and analyse what is known (knowledge), believed (attitudes), and done (practices) regarding a topic of interest, a target population (Nguyen et al., 2019; Andrade et al., 2020). Accordingly, KAP model data can be used to identify knowledge gaps and attitudes that hinder understanding and patterns of practice that could help people comprehend and take action on a given issue (World Development Report, 2008). Furthermore, including qualitative methods, such as interviews, can improve KAP surveys, which were first used in population research and family planning in the 1950s. They are now commonly used to examine health-related behaviours and health-seeking activities. They are also referred to as knowledge, attitude and

practice surveys in their paper on the KAP survey, (Andrade et al., 2020).

selected independent variables (age, gender and grade).

Figure 1: Behavioural Change System

A KAP survey should be conducted before an intervention or awareness campaign. The survey results will provide baseline data for future program success evaluations and the inputs required to develop an effective program. After the intervention, the same surveys should be conducted again to assess its effectiveness. If required, interim KAP assessments may also be planned to ascertain whether the program meets expectations and to implement adjustments as needed.

Objectives

1. To assess the extent of knowledge, attitudes and practices regarding solid waste management among rural and urban middle school students.
2. To assess the effect size of the independent variables on KAP.

Hypotheses

- **H1:** Significant variations in KAP exist among students based on

- **H2:** A correlation exists between knowledge, attitude and practices.

Methodology

A descriptive research design was conducted in Halol, Gujarat, to examine the knowledge, attitudes and practices (KAP) regarding solid waste management among middle-stage students (6th-8th grade) in rural and urban schools.

A multistage sampling approach was employed, combining purposive and stratified random sampling techniques. Six schools were purposively selected: three urban and three rural schools. Within each selected school, stratified random sampling was used to ensure a proportional representation across all grades (6th, 7th, and 8th). Approximately 30 students were randomly selected from each grade, targeting 90 students in each school. The sample size was determined using Cochran's formula. A total of 384 students were calculated

with a 95% confidence level and 5% margin of error. However, to ensure adequate representation across all strata (schools and grades), 720 questionnaires were distributed via stratified random sampling. A total of 678 complete responses were obtained (response rate: 94.2%), which exceeded the minimum required sample size and ensured the statistical validity of the findings.

Post-hoc power analysis using G*Power 3.1.9.4 confirmed that this sample provided strong statistical power (>99%) for detecting medium effect sizes ($f = 0.25$) in planned ANOVA comparisons across grade levels ($\alpha = 0.05$), well above

the conventional threshold of 0.80 (Cohen, 1988).

Data Collection Tool Sections

A structured questionnaire was used to assess the students' knowledge, attitudes, and practices. The data collection tool was divided into four sections, and reliability was determined using JAMOVI 2.6.44. software **Figure 2**.

Statistical Analysis

Descriptive statistics (means, grade deviations) were calculated for the KAP scores. Inferential statistics were used

Data Collection Tools Sections

Section	Description	Response Type	Score Range	Reliability
Demographic Information	Captures student names, ages, genders, standards, and areas.	N/A	N/A	N/A
Knowledge of Solid Waste Management	Assesses knowledge of waste types, disposal, and the 3Rs.	Correct, Incorrect, I do not know	0 to 85	$\alpha=0.88$ $\omega=0.87$
Attitude Toward Solid Waste Management	Evaluates attitudes toward solid waste management.	Agree, Neutral, Disagree	25 to 75	$\alpha=0.86$ $\omega=0.76$
Practices Related to Solid Waste Management	Assesses practices related to solid waste management.	Five-point Likert scale	18 to 90	$\alpha=0.92$ $\omega=0.91$

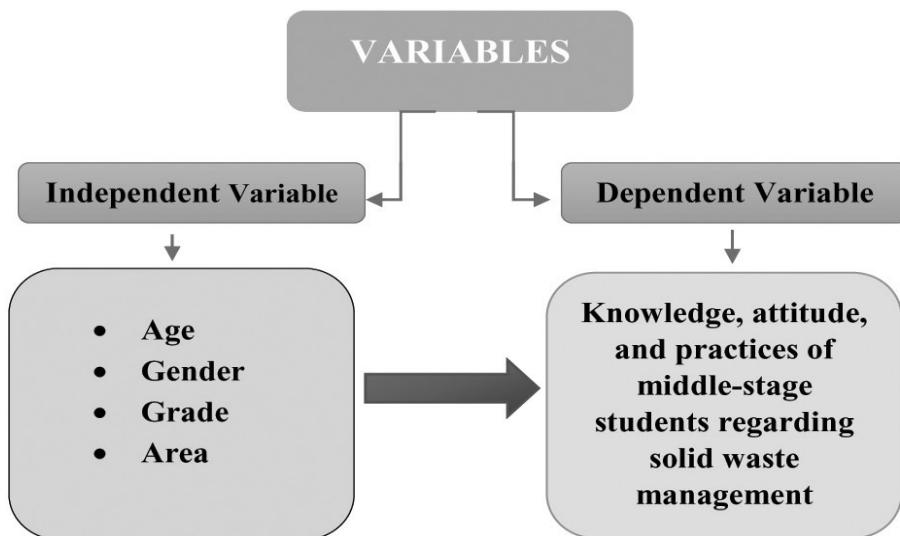
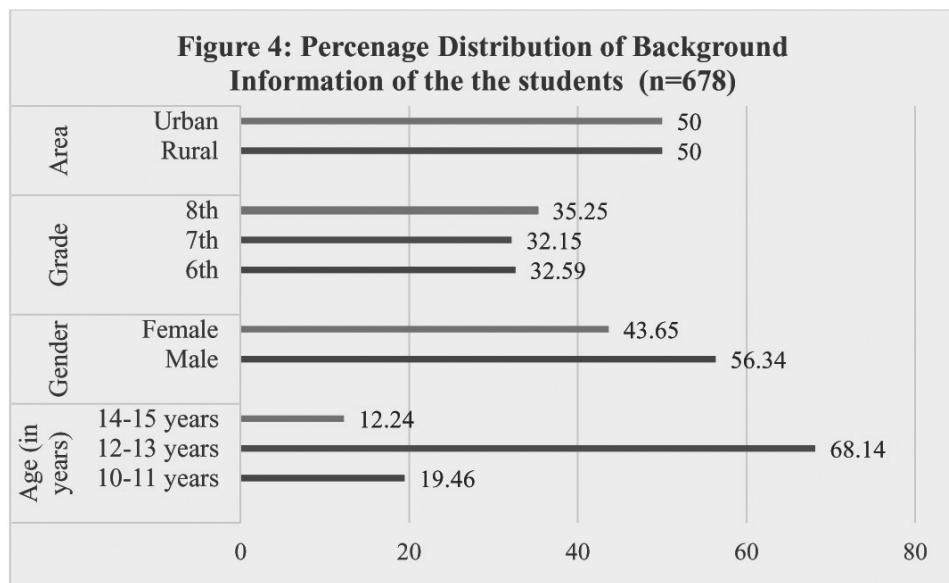

Made with Napkin

Figure 2: Data Collection Tool


to test hypotheses regarding the effects of demographic factors on students' KAP using SPSS software (ANOVA, t-tests, correlation analysis).

Hypothetical relationship between variables:

The schematic diagram below shows the hypothetical relationship between selected independent and dependent variables.

Figure 3: Schematic Diagram of Conceptual Framework

Findings

The findings were obtained by analyzing the data collected through a questionnaire. The questionnaire was divided into four sections:

Section 1: Demographic Profile of students

Figure 4 shows that (56.34%) of the students were male, followed by (68.14%)

aged 12-13. (35.25%) of the students were from grade 8th, one-third from grade 7th, and 50% belonged to urban area schools.

Section 2: Knowledge of Solid Waste Management

The solid waste management knowledge assessment comprised 85 statements related to waste types, disposal methods and waste management methods. The data showed disparities between rural and urban school students' performance. Urban students demonstrated significantly superior knowledge levels, with 70.20 per cent of urban students

Section 3: Attitude Toward Solid Waste Management

Attitude assessment revealed more homogeneous patterns, with most students demonstrating a neutral attitude towards solid waste management. Rural students showed 93.51 per cent neutral attitudes compared to 77.87 per cent among urban students. As shown in Table 2, positive attitudes were more prevalent among urban students.

The mean attitude score was between urban ($M = 53.98$, $SD = 5.15$) and rural ($M = 52.03$, $SD = 4.01$). On the normalised

Table 1
Distribution of Urban and Rural students by extent of Knowledge (n=678)

Extent of Knowledge	Range of Score	Rural (339)		Urban (339)	
		f	%	f	%
High	56-85	0	00	15	04.42
Moderate	29-56	139	41.00	238	70.20
Low	0-28	200	58.99	86	25.36

achieving moderate knowledge scores, compared to only 41.00 per cent of rural students. Conversely, 58.99 per cent of rural students exhibited low knowledge levels, as shown in **Table 1**.

The mean knowledge scores further substantiated these disparities, with urban students achieving significantly higher scores ($M = 37.25$, $SD = 11.76$) than their rural counterparts ($M = 26.89$, $SD = 7.72$). When normalized to a 0-1 scale, urban students achieved 0.42 compared to rural students' 0.33, as shown in **Tables 4 and 5**.

0-3 scale, urban students scored 2.15 compared to rural students 2.06, as shown in **Table 4 & 5**.

Section 4: Practice related to Solid Waste Management

Practice assessment demonstrated significant differences among all KAP components. Urban students exhibited better waste management practices, with 53.39 per cent achieving neutral practice and 6.19 per cent showing good practice. In contrast, 70.79 per cent of rural students displayed poor practices,

Table 2**Distribution of Urban and Rural students by extent of Attitude (n=678)**

Extent of attitude	Range of Score	Rural (339)		Urban (339)	
		f	%	f	%
Positive	59-75	20	05.89	73	21.53
Neutral	42-58	317	93.51	264	77.87
Negative	25-41	02	0.58	02	0.58

Table 3**Distribution of Urban and Rural students by extent of Practice (n=678)**

Extent of Practice	Range of Score	Rural (339)		Urban (339)	
		f	%	f	%
Good	68-90	00	00	21	06.19
Neutral	43-67	99	29.20	181	53.39
Bad	18-42	240	70.79	137	40.41

Table 4**Comparison of KAP scores between Urban and Rural**

KAP	Urban Mean Score	Rural Mean Score
Knowledge (Out of 1)	0.42	0.33
Attitude (Out of 3)	2.15	2.06
Practice (Out of 5)	2.68	2.33
	1.75	1.57

Table 5**Descriptive statistics of the KAP of Urban and Rural**

	Groups	N	Range	Mean		S.D.	Variance
				Stats	S.E.		
Knowledge	Urban	339	54	37.25	0.41	11.76	138.52
	Rural	339	37	26.89	0.63	7.72	59.62
Attitude	Urban	339	29	53.98	0.27	5.15	26.55
	Rural	339	20	52.03	0.21	4.01	16.10
Practice	Urban	339	58	47.60	0.61	11.27	127.11
	Rural	339	45	41.60	0.35	6.46	41.81

Table 6**Descriptive Statistics Test of Normality**

	N	Skewness		Kurtosis	
		Statistics	S.E.	Statistic	S.E.
Knowledge Score	678	0.428	0.94	-0.273	0.187
Attitude Score	678	0.121	0.94	-0.87	0.187
Practice Score	678	1.863	0.94	3.520	0.187

with none of them achieving good practice levels (**Table 3**).

The mean difference between urban ($M = 47.60$, $SD = 11.27$) and rural ($M = 41.60$, $SD = 6.46$) areas was significant. On the normalised 0-5 scale, urban students achieved 2.68 compared to rural students 2.33, as shown in **Tables 4 and 5**.

Statistical Significance Testing Normality Assessment and Test Selection

Normality testing was performed. Skewness and Kurtosis were analysed, revealing highly positive skewness and kurtosis for practice scores (**Table 6**), which showed that knowledge and attitude scores were normally distributed, and practice scores were not.

Testing of Research Hypotheses H1: There exists a variation in the extent of knowledge, attitude and practices regarding solid waste management among the students of selected schools of Halol, Gujarat, due to their selected independent variables.

Variation in Knowledge, Attitude, and Practices by Independent Variables of Students

The research hypothesis (H1) demonstrates significant variations in students' knowledge, attitudes and practices regarding solid waste management based on selected independent variables.

Gender-based differences

The analysis revealed differential patterns across the three KAP domains by gender. For knowledge scores, males showed slightly higher means, but the difference was not statistically significant ($t = 1.68$, $df = 584.92$, $p = 0.093$, Cohen's $d = 0.20$). However, significant gender differences emerged in attitude scores, with females demonstrating more positive attitudes toward solid waste management compared to males ($t = -2.77$, $df = 587.93$, $p = 0.006$, Cohen's $d = 0.33$), representing a medium effect size, as shown in **Table 7**.

Practice scores exhibited a highly significant gender disparity. The Mann-Whitney U test revealed females

Table 7: t-Test for Knowledge and Attitudes scores by Gender and Area

Variable	Variance Assumption	Mean difference	t-value	df	p-value	Cohen's d	Significant
Knowledge (Gender)							
Male	Equal Variance Not assumed	1.50	1.68	584.92	0.093	0.20	Not
Female							
Attitude (Gender)							
Male	Equal Variance Not assumed	-1.03	-2.77	587.93	0.006	0.33	Yes
Female							
Knowledge (Area)							
Rural	Equal Variance Not assumed	-10.45	-13.51	591.20	< 0.001	1.30	Yes
Urban							
Attitude (Area)							
Rural	Equal Variance Not assumed	-0.204	-0.56	676	0.575	0.04	Not
Urban							

significantly outperformed males in waste management practices ($U = 37,451.00$, $Z = -7.90$, $p < 0.001$, Cohen's $d = 0.30$), with females achieving higher mean ranks (398.53) compared to males (280.47), indicating a medium effect size, as shown in **Table 8**.

Urban-Rural Disparities

T-test analysis revealed that urban students had substantially superior knowledge scores compared to rural school students ($t = -13.51$, $df = 591.20$, $p < 0.001$, Cohen's $d = 1.30$), with a mean difference of 10.45 points, representing a large effect size. However, attitude scores showed no significant variation between urban and rural students ($t = -0.56$, $df = 676$, $p = 0.575$, Cohen's $d = 0.04$). **Table 7**. Practice scores also revealed a significant difference favouring urban students ($U = 50$,

109.50, $Z = -2.56$, $p = 0.011$, Cohen's $d = 0.10$), although with a small effect size (**Table 8**).

Age and Grade Influences

One-way ANOVA results demonstrated significant age-related variations in both knowledge ($F = 3.68$, $df = 2,675$, $p = 0.026$, $\eta^2 = 0.011$) and attitude ($F = 4.49$, $df = 2, 675$, $p = 0.012$, $\eta^2 = 0.013$) scores. **Table 9**. Post-hoc analyses using Tukey HSD revealed that older students (14-15 years) significantly outperformed younger students (10-11 years) in both knowledge (mean difference = 4.211, $p = 0.022$) and attitude components (mean difference = 1.922, $p = 0.010$) (Table 11).

Students in higher grades demonstrated significantly better knowledge scores ($F = 27.49$, $df = 2,675$, $p < 0.001$, $\eta^2 = 0.075$),

Table 8: Mann-Whitney U test for Practice score by Area and Gender

Variable	N	Mean Rank	Sum of Ranks	U	Z	p-value	Cohen's d	Significant
Practice (Area)								
Rural	339	280.47	95,081.00	37451.00	-7.90	0.001	0.30	Yes
Urban	339	398.53	135,100.00					
Practice (Gender)								
Male	382	322.68	123,262.50	50109.50	-2.56	0.11	0.10	Yes
Female	296	361.21	106,918.50					

with 8th grade students outperforming both 6th (mean difference = 7.214, $p < 0.001$) and 7th grade students (mean difference = 5.458, $p < 0.001$) However, attitude scores remained consistent across academic levels ($F = 1.092$, $df = 2,675$, $p = 0.336$) (Table 9).

Practice scores varied significantly by grade ($\chi^2 = 26.53$, $df = 2$, $p < 0.001$), with progressive improvement from 6th grade (mean rank = 285.93) to 8th grade (mean rank = 376.75). However, age did not show significant results ($\chi^2 = 0.466$, $df = 2$, $p = 0.792$).

Table 9
One-way ANOVA Results for differences of Knowledge and Attitudes scores by Grade and Age

Grade									
Variable	Source	SS	df	MS	F	p	η^2	Significant	
Knowledge Scores	Between Groups	6562.123	2	3281.061	27.49	< 0.001	0.075	Yes	
	Within Groups	80553.854	675	119.339					
Attitude Scores	Between Groups	48.552	2	24.276	1.092	0.336	0.003	No	
	Within Groups	15008.376	675	22.235					
Age									
Knowledge Scores	Between Groups	939.50	2	469.75	3.68	0.026	0.011	Yes	
	Within Groups	86176.47	675	127.68					
Attitude Scores	Between Groups	197.47	2	98.73	4.49	0.012	0.013	Yes	
	Within Groups	14859.46	675	22.014					

Table 10: Kruskal-Wallis H Test for Difference in Practice Scores by Grade and Age

Grade							
Variable	Group	N	Mean Rank	X²	df	p	Significant
Practice Score	6 th Grade	221	285.93	26.53	2	0.00	Yes
	7 th Grade	218	352.97				
	8 th Grade	239	376.75				
Age							
Practice Score	10-11 years	132	329.20	0.466	2	0.79	Not
	12-13 years	463	341.70				
	14-15 years	83	343.60				

Table 11: Tukey HSD Post-Hoc Test for Knowledge Score Across Age Groups

Group Comparison	Mean Diff (I-J)	Sig. (p)	Significant
10-11 years vs 14-15 years	-4.211	0.022	Yes
Tukey HSD Post-Hoc Test for Knowledge Score Across Grade Groups			
6 th vs 8 th Grade	-7.214	0.000	Yes
7 th vs 8 th Grade	-5.458	0.000	Yes
Tukey HSD Post-Hoc Test for Attitude Score Across Age Groups			
10-11 years vs 14-15 years	-1.922	0.010	Yes
12-13 years vs 14-15 years	-1.431	0.029	Yes

H2: A correlation exists between knowledge, attitude and practices of dependent variables.

To test H2, Pearson's correlation coefficients were calculated for the KAP scores. The analysis revealed significant but weak positive associations between the knowledge and attitude domains ($r = 0.103$, $p = 0.007$), and a significant correlation emerged between the knowledge and practice domains ($r = 0.250$,

$p < 0.001$). However, the attitude and practice domains showed no significant correlation ($r = 0.001$, $p = 0.977$) (**Table 12**).

Discussion

The findings revealed significant differences in knowledge, attitudes, and practices (KAP) regarding solid waste management among middle-stage students in Halol, Gujarat, particularly between urban and rural schools. (Ramsey et al., 1981) stated that increased

Table 12: Pearson Correlation Matrix

	Knowledge	Attitude	Practice
Knowledge	-	0.103** p = 0.007	0.250 p = 0.00
Attitude		-	0.001 p = 0.977
Practice			-

Note N = 678, p < 0.01 () 2-tailed**

knowledge leads to favourable attitudes, which in turn lead to actions that promote better environmental quality. Urban students demonstrated superior knowledge and better waste management practices, likely due to greater exposure to environmental education, infrastructure, and awareness programs in urban areas. These results align with previous research, such as (Nguyen and Nguyen, P. N., 2021) who showed in their paper that the mobilization of social resources for educational development in schools was considered important for the cause of education, as it enhances the implementation and efficiency of education.

The large effect size for knowledge differences (Cohen's $d=1.30$) underscores the need for enhanced environmental education in rural schools to address this gap.

However, attitude scores showed no significant urban-rural variation, with most students displaying neutral attitudes. This homogeneity may reflect limited exposure to initiatives that foster strong positive attitudes toward waste management, as noted by (Ajzen, 1991)

where social influences and perceived behavioural control play crucial roles in shaping attitudes. The lack of correlation between attitudes and practices ($r=0.001$, $p=0.977$) suggests that positive attitudes alone do not translate into effective practice without sufficient knowledge or resources. This supports (Hungerford and Volk's, 1990) assertion that knowledge and skills serve as prerequisites for behavioural change; more knowledge will motivate humans to act in more responsible ways.

Gender differences were notable, with females exhibiting more positive attitudes and better practices than males did. Age and academic level also influenced outcomes, with older students and those in higher grades demonstrating better knowledge and practices, likely due to cumulative exposure to educational content and cognitive development.

There was a weak positive correlation between knowledge and practice ($r=0.250$, $p<0.001$). (Mundo et al., 2009) also showed an insignificant correlation between environmental awareness, knowledge, and perception with solid waste management in their study, which aligns

with (Meijer et al., 2015) who showed that knowledge, attitudes, and perceptions are intrinsic factors; however, extrinsic factors like access to resources, extension services, and supportive social structures are equally important in shaping norms. The non-normal distribution of practice scores ($p<0.001$) indicates variability in behavioural adoption, particularly in rural areas, where poor practices were prevalent. These findings highlight the importance of integrating practical training, such as composting and recycling programs, into school curricula to bridge the knowledge-practice gap. (Hines et al., 1987; Kollmuss & Agyeman, 2002; Bamberg & Moser, 2007), which argues that while knowledge is necessary, external and psychological factors, such as social norms, perceived behaviour, emotional engagement, and other barriers, critically influence behavioural outcomes.

Conclusion

This study underscores the critical role of environmental education in shaping students' knowledge, attitudes and practices regarding solid waste management in Halol, Gujarat, India. Urban students outperformed their rural counterparts in knowledge and practices, highlighting the need for targeted interventions in rural schools to address these disparities. Gender, age, and grades significantly influenced KAP outcomes, with females and older students demonstrating more favourable behaviours than their counterparts. The

weak correlations between knowledge, attitudes and practices emphasize the need for holistic educational strategies that combine theoretical learning with practical applications such as waste segregation and recycling initiatives. Schools should integrate sustainability into curricula and model eco-conscious behaviours through infrastructure, such as waste reduction systems. Future research should explore longitudinal interventions to assess the sustained impact of environmental education on student behaviour, contributing to a greener and more sustainable future.

Funding Declaration

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

- ❖ Ahmad, J., Noor, S. M., & Ismail, N. (2015). Investigating students' environmental knowledge, attitudes, practices, and communication. *Asian Social Science*, 11(16), 284–293. <https://doi.org/10.5539/ass.v11n16p284>
- ❖ Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, 50(2), 179–211. [https://doi.org/10.1016/0749-5978\(91\)90020-T](https://doi.org/10.1016/0749-5978(91)90020-T)
- ❖ Andrade, C., Menon, V., Ameen, S., & Kumar Praharaj, S. (2020). Designing and conducting knowledge, attitude,

and practice surveys in psychiatry: Practical guidance. *Indian Journal of Psychological Medicine*, 42(5), 478–481. <https://doi.org/10.1177/0253717620946111>

❖ Bamberg, S., & Möser, G. (2007). Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour. *Journal of Environmental Psychology*, 27(1), 14–25. <https://doi.org/10.1016/j.jenvp.2006.12.002>

❖ Bandura, A. (1976). Self-reinforcement: Theoretical and methodological considerations. *Behaviorism*, 4(2), 135–155. <https://philpapers.org/rec/BANSTA>

❖ Black, S. E., Devereux, P. J., & Salvanes, K. G. (2003). Why the apple doesn't fall far: Understanding intergenerational transmission of human capital (NBER Working Paper No. 10066). National Bureau of Economic Research. <https://www.nber.org/papers/w10066>

❖ Bui, T. D., Tsai, F. M., Tseng, M.-L., Wu, K.-J., & Chiu, A. S. F. (2020). Effective municipal solid waste management capability under uncertainty in Vietnam: Utilising economic efficiency and technology to foster social mobilisation and environmental integrity. *Journal of Cleaner Production*, 259, 120981. <https://doi.org/10.1016/j.jclepro.2020.120981>

❖ Chopra, D. (2024, July 8). Importance of sustainability in school education. *India Today*. <https://www.indiatoday.in/education-today/featurephilia/story/importance-of-sustainability-in-school-education-2564440-2024-07-08>

❖ Del Mundo, Dann Marie N.; Rebancos, Carmelita M.; and Alaira, Sofia A., “Correlation of socio-economic status, environmental awareness, knowledge, and perception on solid waste management practices in barangays Talisay and Balibago, Calatagan, Batangas, Philippines” (2009). *Journal Article*. 4231. <https://www.ukdr.uplb.edu.ph/journal-articles/4231>

❖ Hines, J. M., Hungerford, H. R., & Tomera, A. N. (1987). Analysis and synthesis of research on responsible environmental behavior: A meta-analysis. *The Journal of Environmental Education*, 18(2), 1–8. <https://doi.org/10.1080/00958964.1987.9943482>

❖ Hungerford, H. R., & Volk, T. L. (1990). Changing learner behavior through environmental education. *The Journal of Environmental Education*, 21(3), 8–21. <https://doi.org/10.1080/00958964.1990.10753743>

❖ Kollmuss, A., & Agyeman, J. (2002). Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? *Environmental Education Research*, 8(3), 239–260. <https://doi.org/10.1080/13504620220145401>

❖ Meijer, S. S., Catacutan, D., Ajayi, O. C., Sileshi, G. W., & Nieuwenhuis, M. (2015). The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. *International Journal of Agricultural Sustainability*, 13(1), 40–54. <https://doi.org/10.1080/14735903.2014.912493>.

❖ Nabor, A. P., Jr., & Ortega-Dela Cruz, R. A. (2022). Pupils' awareness, knowledge, attitude and practice of school-based solid waste management in a public elementary school in the Philippines. *UW Journal of Social Sciences*, 5(1), 1–14.

❖ Nguyen, T. D., & Nguyen, P. N. (2021). Social resources mobilization for general education development: A case study for secondary schools in Ho Chi Minh City, Vietnam. *Vietnam Journal of Education*, 5(2), 21–28. <https://doi.org/10.52296/vje.2021.34>

❖ Peyton, R. B. (1977). An assessment of teachers' abilities to identify, teach, and implement environmental action skills (Publication No. 7806071) [Doctoral dissertation, Southern Illinois University at Carbondale]. *Dissertation Abstracts International*, 38(10-A), 6071.

❖ Ramsey, J. M., Hungerford, H. R., & Tomera, A. N. (1981). The effects of environmental action and environmental case study instruction on the overt environmental behavior of eighth-grade students. *The Journal of Environmental Education*, 13(1), 24–30. <https://doi.org/10.1080/00958964.1981.9942638>

❖ Stern, P. C. (2000). Toward a coherent theory of environmentally significant behavior. *Journal of Social Issues*, 56(3), 407–424. <https://doi.org/10.1111/0022-4537.00175>

❖ Volk, T. L., Hungerford, H. R., & Tomera, A. N. (1984). A national survey of curriculum needs as perceived by professional environmental educators. *The Journal of Environmental Education*, 16(1), 10–19. <https://doi.org/10.1080/00958964.1984.9942697>

❖ World Bank. (2008). *World development report 2008: Agriculture for development*. <https://doi.org/10.1596/978-0-8213-6807-7>.

Global classrooms in India: the rise of foreign universities

Dr. Kandi Kamala*

Abstract

The landscape of higher education in India is undergoing a transformative shift with the entry of foreign universities, marking the beginning of a globalized classroom environment. This development is closely linked to policy reforms under the National Education Policy (NEP) 2020, which encourages international collaboration, innovation, and academic mobility. The presence of global institutions in India aims to enhance academic quality, diversify learning experiences, and offer globally recognized degrees at relatively lower costs for Indian students. It also provides opportunities for faculty exchange, joint research and skill development aligned with international standards. However, the rise of foreign universities raises critical questions regarding regulatory frameworks, equity in access, affordability and the long-term impact on Indian universities. This paper explores the drivers, opportunities, and challenges associated with the emergence of global classrooms in India, analysing their potential to reshape the higher education system and their implications for India's aspiration to become a global knowledge hub.

Keywords: NEP 2020 (National Education Policy), Globalization of education, cross-border education, Higher education reforms in India, academic collaboration, student mobility, world-class education, research and innovation, knowledge economy.

Introduction

Globalization has reshaped the higher education landscape, leading to increasing academic mobility and international collaboration. In this context, India, one of the world's largest education markets, has emerged as a focal point for global universities seeking to expand

their presence. The entry of foreign universities into India signifies not only an educational transformation but also a strategic effort to integrate Indian higher education with global standards.

The National Education Policy (NEP) 2020 has played a crucial role in encouraging the establishment of

* Assistant Professor, Dept. of Political Science, Government Degree College for Women (Autonomous) Begumpet, Hyderabad, Telangana, India 500016.

international campuses and collaborations. By allowing renowned global institutions to set up operations in India, the government aims to enhance quality, provide greater access to world-class education, and reduce the outflow of Indian students seeking education abroad. This initiative is expected to make higher education more competitive, diverse, and innovation-driven, while also fostering international exposure for Indian students without requiring them to leave the country.

At the same time, the rise of foreign universities in India brings new challenges and debates. Questions of regulation, quality assurance, affordability, and the impact on domestic universities are central to this discourse. While some view foreign universities as partners in strengthening India's knowledge economy, others caution against commercialization and unequal access. Thus, the establishment of global classrooms in India represents both opportunity and complexity. It has the potential to redefine the academic ecosystem by blending global best practices with local educational needs, preparing students for a more interconnected and knowledge-driven world.

History of Global classrooms in India: the rise of foreign universities

The idea of "global classrooms" in India, facilitated by the entry of foreign universities, has evolved over decades, shaped by policy reforms, globalization, and the growing demand for quality higher education.

1. Early Phase: Post-Independence (1950s–1980s)

- After independence in 1947, India focused on building indigenous institutions such as the IITs, IIMs and central universities.
- Foreign collaborations existed, but mainly in the form of academic partnerships, faculty exchanges, and development aid (e.g., U.S. assistance in setting up IIT Kanpur, Soviet support for IIT Bombay).
- Direct foreign campuses were not allowed; education remained a state-regulated public good.

2. Globalization and Liberalization Era (1991–2000s)

- The economic reforms of 1991 opened India to globalization.
- With the IT and service sector boom, there was an increased demand for globally recognized degrees.
- Many Indian students started going abroad (mainly U.S., U.K., Australia, Canada), creating a "brain drain."
- Foreign universities began forming **twinning programs** and **collaborative courses** with Indian institutions, though they still could not establish campuses directly.

3. Attempts at Policy Reform (2000s–2010s)

- The **Foreign Educational Institutions (Regulation of Entry and Operations) Bill, 2010** sought to allow foreign universities to set up in India with regulations, but it lapsed due to political opposition.

- During this period, several foreign universities partnered with private Indian universities (e.g., Amity, Manipal, Symbiosis) to offer joint programs.
- Offshore campuses (like in Dubai, Singapore) attracted Indian students, highlighting India's lag in hosting global institutions.

4. New Education Policy (NEP) 2020 and Beyond

- NEP 2020 marked a turning point, explicitly allowing **top global universities** to set up campuses in India.
- It envisioned India as an international education hub, reducing student outflow and fostering research collaboration.
- In 2023–2024, the **UGC released guidelines** for foreign universities to establish campuses in India, with academic and financial autonomy.
- This move coincided with India's aim to become a global knowledge

economy and align with the idea of "Study in India."

5. Current Developments (2023–2025)

- Prestigious universities such as **Deakin University (Australia)** and **University of Wollongong** announced campuses in Gujarat's GIFT City.
- Talks are ongoing with other institutions from the U.S., U.K. and Europe.
- India's push to integrate global universities with its own education system is expected to increase competition, improve quality and make education globally relevant, while remaining accessible to local students.

Refined year-wise table of the number of Indian students going abroad to study (approximate figures), covering **2015 through 2024**, based on the best available official data: **Table 1**

Table 1

Year	Indian Students Abroad (approx.)
2015	~368,625 Education for All in India
2016	~382,184 Education for All in India
2017	~454,009 Education for All in India
2018	~517,998 Education for All in India
2019	~586,337 Education for All in India <i>Hindustan Times</i>
2020	~259,655 / ~260,363 Education for All in India <i>The Economic Times Business Standard</i>
2021	~445,582 / ~444,553 Education for All in <i>IndiamintNews18</i>
2022	~750,365 / ~750,000 <i>Hindustan TimesNews18</i>
2023	~894,783 / ~894,000 <i>Sabrang India The Indian Express+1</i>

- *Going abroad* (outbound in that year): ~760,073 students.
- *"Currently studying abroad"* (enrolled overseas): ~1,335,878 (i.e., 13.36 lakh) students.

1. Difference in Metrics for 2024

- ❖ The **~760,073** figure reflects the number of students who went abroad **in 2024** (based on government's Bureau of Immigration data on outbound movement)
- ❖ The **~13.36 lakh** number captures those **already pursuing studies abroad in 2024**, regardless of when they left.

These numbers measure slightly different things—so it is valuable to specify which perspective one is interested in.

2. Missing Data for 2025

As of **August 2025**, full-year data for 2025 is not publicly available. However, news reports indicate that in early 2025, about **760,000** students went abroad for higher education—nearly matching the total for 2024. This suggests continuation of recent trends, but the complete annual figure is yet to be confirmed.

1. How Many Students Go Abroad Each Year?

- According to **government data**, more than **7.6 lakh** (760,000) Indian students went abroad for

higher studies in **2024**, based on Bureau of Immigration figures. This was slightly lower than the peak of 8.95 lakh in 2023.

- Another key figure comes from data presented to Parliament: as of **2024**, **13.35 lakh** Indian students were **pursuing higher education abroad** (i.e., enrolled across multiple years), compared to 13.19 lakhs in 2023 and 9.07 lakhs in 2022.
- In **2025**, estimates suggest this number has grown significantly, reaching approximately **1.8 million** (i.e., 18 lakh) Indian students studying overseas.

Foreign universities arriving in India: a new chapter in Higher Education

1. Landmark: University of Southampton Opens in Gurugram

The **University of Southampton** (UK) has become the **first foreign university** to establish a full-fledged campus in India under the **UGC's 2023 regulations**. Named “Southampton Delhi,” the campus in Gurugram’s International Tech Park will launch in **August 2025**, offering four undergraduate and two postgraduate

At-a-Glance Comparison Table 2

Metric	Approximate Value
Indian students departing in 2024	7.6 lakh (new annual departures)
Indian students enrolled abroad in 2024	13.35 lakh (total enrolled)
Indian students abroad in 2025	~18 lakh (total enrolled)
Total spending by Indian students (2025)	US \$70 billion (estimated)

courses in fields like computer science, business management, accounting & finance, economics, and finance/international management. These programs mirror the UK campus in quality, and students may spend up to a year at Southampton's UK or Malaysia campuses. Notably, TOEFL/IELTS scores are not required.

2. Five More Universities to Join by 2026–27

Between **2026 and 2027**, five additional global institutions have received **Letters of Intent (LoIs)** from the UGC to set up autonomous campuses in India:

- Illinois Institute of Technology (USA)
- University of Liverpool (UK)
- Victoria University (Australia)
- Western Sydney University (Australia)
- Istituto Europeo di Design (Italy)

These campuses will allow students to earn international degrees locally, drastically reducing the costs and logistical challenges of overseas study.

3. Mumbai EduCity: A New Hub for Global Education

As part of the visionary **Mumbai EduCity** initiative near Navi Mumbai, the following five institutions have also received LoIs:

- Illinois Tech (USA)
- University of Aberdeen (UK)
- University of York (UK)

- University of Western Australia (Australia)
- Istituto Europeo di Design (Italy)

This development seeks to position Mumbai as a global knowledge capital, fostering innovation, research and entrepreneurship.

4. Already Operational: Deakin University & University of Wollongong

Australian universities have already made headway:

- **Deakin University** and **University of Wollongong** have established campuses at **GIFT City**, Gujarat, supported by special regulatory and financial frameworks.
- Wollongong has also reportedly started offering short-term postgraduate programs (around Rs 8–9 lakh) even before full-scale operations began.

5. UGC Regulations Enabling the Wave

The **UGC's 2023 regulations** pave the way for **top-500 global universities** (by overall or subject rankings, or reputational standing) to set up **autonomous campuses in India**. These universities can decide their own curricula, admissions, fee structures and faculty hires, while maintaining parity with their home institutions.

6. Why It Matters for India

- **Local access to global quality education:** Students can pursue world-class degrees without going abroad, saving significantly on cost and time.

- **STEM-focused offerings:** Many programs emphasize STEM, business, design, and research—areas crucial to India's development.
- **Boost to research & retention:** Enhances domestic research capacity and helps retain talent that would otherwise study overseas.
- **Global academic ecosystem:** Creates vibrant, multicultural campuses and underscores India's emergence as a **global education hub**.

Table.3 Foreign Universities Arriving in India (as of 2025–27)

University / Institution	Country	Location (India)	Status / Expected Operations Start	Programs / Notes
Deakin University	Australia	GIFT City, Gujarat	Announced 2023; operations started 2024	Offering Business Analytics, Cyber security; first foreign campus under UGC rules
University of Wollongong (UOW)	Australia	GIFT City, Gujarat	Commenced November 2024	Postgrad courses in Computing (Data Analytics, FinTech), modern infrastructure
University of Southampton	UK	Gurugram (Gurgaon), Haryana	Classes starting ~August 2025	UG & PG in CS, Business, Economics, Law, Engineering; investment £30 m
University of York	UK	Navi Mumbai (Mumbai region)	LoI issued; enrolling by late 2026–27	To offer UG/PG in Comp Sci, Business, Economics, Creative Industries
University of Aberdeen	UK	Navi Mumbai or Mumbai region	LoI issued; start ~by 2026	Full autonomy, programs pending; part of 5 LoI group
University of Western Australia (UWA)	Australia	Navi Mumbai / Chennai (planned)	LOI; launch by ~2026–27	STEM & Business programs; campuses in Mumbai and Chennai envisaged
Illinois Institute of Technology (IIT)	USA	Navi Mumbai (likely)	LoI; start operations by ~2026–27	First U.S. university in India under UGC rules

University / Institution	Country	Location (India)	Status / Expected Operations Start	Programs / Notes
Istituto Europeo di Design (IED)	Italy	Navi Mumbai	LOI; expected by ~2026–27	Offering design, fashion, visual arts, communication programs
University of Liverpool	UK	Bengaluru	LoI issued; operations from ~Aug 2026	UG/PG: Business, Finance, CS, Biomedical Sciences, Game Design
Western Sydney University	Australia	Greater Noida (UP)	LoI; classes in Aug–Sept 2026	BBA, IT; first phase infrastructure under development
Victoria University	Australia	Noida (planned)	LoI; expected by ~2026–27	Career-oriented courses in Business, IT, Hospitality
Queen's University Belfast	UK	GIFT City, Gujarat	Plans for early 2026 launch	Postgrad Business Analytics, Finance, Project Management; future AI focus
University of Surrey	UK	GIFT City, Gujarat	Expected ~2026–27	Offering Business, Finance, CS, AI, Cybersecurity
Coventry University	UK	GIFT City, Gujarat	Expected ~2026	UG in International Business, Business & Finance
Lincoln University College (Malaysia)	Malaysia	Telangana (planned)	Proposed 2025 – pending approval	Programs in Medicine, Engineering, Business, AI

Source: UGC

India's bold steps—starting with Southampton and expanding rapidly through LoIs and policy reform—are reshaping higher education. By blending international reputation with local accessibility, the country is on track to become a premier destination for global learning.

Challenges for Foreign University Campuses in India

1. Affordability & Access

- **High tuition fees** at foreign branch campuses risk limiting access to only affluent students, contrary to NEP 2020's inclusivity goals.
- **Lack of reservation obligations** and insufficient scholarships may further exclude socio-economically disadvantaged groups, reinforcing inequality.

2. Regulatory Complexity

- India's **fragmented regulatory framework**, involving UGC, AICTE and other bodies, challenges foreign campuses offering multidisciplinary programs.
- **State-level differences**, lands, approvals, taxes, and bureaucratic inertia add layers of difficulty.
- Despite the FHEI Regulations (2023) offering a legal foundation, navigating evolving and overlapping rules remains tough.

3. Financial Sustainability & Commercialization

- There is a tension between maintaining academic quality

and achieving commercially viable operations, especially without preferential treatment.

- Foreign campuses may pivot toward profit-driven models, compromising the educational mission and raising equity concerns.

4. Brand vs Substance

- Many early branch campuses are specialized or small, rather than full-scale research universities. This can dilute reputation and raise concerns about academic depth.
- Overreliance on branding without delivering high academic standards risks sceptical student response.

5. Cultural and Academic disconnection

- Imported teaching methods may clash with Indian classroom norms, pedagogies and evaluation styles. Adapting while preserving quality is delicate.
- Without integration into local curriculum, faculty and collaboration, campuses risk isolation from India's broader educational ecosystem.

6. Faculty Recruitment & Immigration

- Hiring foreign faculty involves complex visa processes and regulatory compliance, including UGC's minimum-stay requirements.
- Recruitment of Indian academics can be sensitive due to compensation inequalities or infrastructure constraints.

7. Operational Infrastructure & Perception

- Many campuses begin operations in **rented urban buildings**, lacking the aesthetic and facilities of typical universities—distracting from institutional credibility.

8. Limited Initial Impact

- The anticipated scale of branch campuses is modest; their effect on Gross Enrolment Ratio and the overall education landscape will be gradual.
- Excessive hype or poorly prepared roll-outs risk launching distrust in internationalisation efforts.

9. Sovereignty & National identity

- Academics caution against foreign institutions overshadowing local educational autonomy or undercutting indigenous curriculum and values.
- Foreign campuses, if seen as instruments of soft power, could raise concerns about academic independence.

Practical examples & context

- **University of Southampton** is investing up to **£30 million** to open a full-fledged campus in Gurugram by 2025, targeting 5,500 students annually with

Table-4 Challenges at a Glance

Category	Core Challenges
Affordability & Access	High fees; limited scholarships; equity concerns
Regulation & Bureaucracy	Multi-layered approvals; state variance; evolving policy complexity
Financial Viability	Need for profits versus maintaining quality; long-term sustainability
Academic Integrity	Reputation risks; specialized focus; marketing overshadowing substance
Cultural Integration	Pedagogy mismatch; insufficient local adaptation
Faculty & Immigration	Complex visa/stay rules; talent competition and retention issues
Infrastructure & Facilities	Lack of campus identity; temporary setups
Scale & Impact	Slow enrolment; risk of premature failures
National Identity & Policy	Concerns over sovereignty; soft power dynamics; local institutional displacement

degrees in computing, business, engineering, economics and law, at about two-thirds the cost of UK fees.

- Similarly, institutions like **Deakin University** and **University of Wollongong** have begun operations in **GIFT City**, while others are pursuing campuses in Mumbai and Delhi—highlighting both opportunity and urgency.
- Indian higher education faces foundational challenges—such as limited international faculty, infrastructure shortfalls, insufficient international collaborations and poor industry engagement—which could affect the ecosystem's readiness for foreign campuses.

Current Landscape: Foreign Universities in India

Notable Developments

- University of Southampton, Gurugram:** First foreign university to open under UGC's 2023 regulations, offering UK-equivalent degrees in fields like Computer Science, Business Management, Economics, and more. Classes begin August 2025. Students can spend up to a year abroad at Southampton's UK or Malaysia campuses.
- University of Wollongong (UOW), GIFT City, Gujarat:** Launched in November 2024, offering postgraduate programs in Data Analytics and FinTech with

modern infrastructure and scholarships.

- **Other Authorized Institutions:** The UGC has issued Letters of Intent (LoIs) to five more foreign universities to establish campuses in Mumbai and Navi Mumbai—including the Universities of York, Aberdeen, Western Australia, Illinois Institute of Technology, and IED (Italy). Admissions may begin by late 2026.
- **Policy Enablers:** The NEP 2020 and UGC's 2023 regulations are actively facilitating entry of globally ranked universities, creating new educational ecosystems and reducing outbound student mobility.

Benefits

- **Affordable Global Education at Home:** Students can access international curricula without incurring high travel and living costs.
- **Potential for Enhanced Academic Standards:** These partnerships can catalyze improvements in pedagogy, research output, and institutional quality.
- **Economic & Structural Boosts:** Campuses could drive job creation, local development, and help retain intellectual capital.

Challenges & Criticisms

- **Accessibility and Equity:** High costs may make these campuses accessible only to the affluent—undermining inclusivity goals.

- **Competitive Pressure on Indian Institutions:** Well-resourced foreign campuses may attract top students and faculty away from local universities.
- **Risk of Transactional Campuses:** Without research engagement or local relevance, campuses could become mere teaching extensions rather than academic hubs.
- **Commercialization and Oversight:** Ensuring academic integrity and financial transparency is critical, or risk education being commodified.

Strategic Recommendations

1. Promote Inclusive Access & Affordability

- **Mandate Quotas and Scholarships:** Require that ≥25% of seats be reserved for underprivileged students, supported by full or partial scholarships.
- **Flexible Models:** Offer tuition subsidies, need-based fee waivers, or government-backed fellowships to broaden access.

2. Ensure Quality & Accountability

- **Tiered Regulations:** Implement differentiated oversight—providing operational ease to top-tier global institutions while maintaining strict quality checks.
- **KPIs and Transparency:** Measure indicators like local faculty hiring, joint research output, community engagement, socio-economic diversity, and publish annual performance reports.

3. Foster Collaborative Synergies

- **Joint Initiatives:** Encourage co-built programs, shared research centers, dual degrees, and faculty exchanges between foreign and Indian universities.
- **Leverage Local Strengths:** Encourage models like GITAM's dual degrees with University of Melbourne or RV University's collaborations—blending global and Indian expertise.

4. Align with Local Context & Culture

- **Curriculum Indianisation:** Integrate Indian case studies, developmental challenges, and cultural knowledge systems into coursework.
- **Partner with Communities:** Projects and learning tied to local economic and social needs can strengthen relevance and real-world impact.

5. Safeguard Domestic Institutions

- **Capacity Building:** Use foreign campuses as nodes of excellence that support multi-university development, rather than as competing entities.
- **Balanced Expansion:** Strengthen Indian universities in parallel through funding, autonomy, and regulatory reform so that they can also evolve globally.

Conclusion

The entry of foreign universities into India marks a significant turning point in the country's higher education

landscape. These global classrooms have introduced international standards of teaching, cutting-edge research, and innovative pedagogical practices, thereby enhancing the quality and competitiveness of Indian higher education. They offer students greater exposure to global perspectives, cross-cultural learning, and increased employability in an interconnected world.

However, the rise of foreign institutions also presents challenges, including affordability, accessibility, and the potential overshadowing of domestic universities. Policymakers and educational stakeholders must ensure that these global initiatives complement rather than replace local institutions, fostering collaboration, knowledge exchange, and equitable opportunities for all students. Ultimately, the growth of foreign universities in India is a catalyst for modernization, global integration, and academic excellence, provided it is accompanied by thoughtful regulation, inclusivity, and strategic partnerships with Indian universities.

References

1. Bhushan, S. (2005). *Foreign Universities in India. International Higher Education*. An early analysis of the challenges and opportunities of foreign universities operating in India.

2. Krebs, K. C. (2020). *Global, international, and intercultural learning in university classrooms*. *Journal of Studies in International Education*.

3. Lalitha, S. (2025). *15 foreign universities to open campuses in India this academic year*. *The New Indian Express*. Reports on the increasing number of foreign universities setting up campuses in India.

4. Observer Research Foundation (ORF). (2023). *Foreign Universities in India: Lessons and Learnings from Global Experiences*. Examines the experiences of foreign institutions in other countries and their applicability to India.

5. Pawar, S. K. (2024). *India's global education hub ambitions: Recent student mobility trends*. *Journal of International Students*. Analyzes India's aspirations to become a global education hub and the impact on student mobility. Schukoske, J. E. (2006). *Bringing Foreign Universities to India*. *SSRN Electronic Journal*. Discusses the implications and challenges of foreign universities establishing campuses in India.

6. Times of India. (2025). *Fix skill gaps and build industry connect to make NEP reforms effective: Academics*. Discusses the need to address skill gaps and strengthen industry connections to implement NEP reforms effectively.

7. Times of India. (2025). *Penumaka ZP High School gets global-standard English lab thanks to dedicated teacher*. Highlights efforts to provide rural students with global exposure through advanced English labs.

8. Times of India. (2025). *UGC approves campuses of 5 foreign universities in India: Full list and launch timeline here.* Provides information on the foreign universities approved to set up campuses in India.
9. University Grants Commission (UGC). (2023). *UGC approves campuses of 5 foreign universities in India. Times of India.* Details the UGC's approval of foreign university campuses in India under the 2023 regulations.
10. Vajirao Institute. (2025). *Foreign Universities in India: Opportunities and Challenges of Global Campuses.* Analyzes the opportunities and challenges posed by the rise of foreign university campuses in India.

A social learning theory-based learning intervention to promote sustainable Waste Management behaviour among students

Astha Garg*

Abstract

India faces numerous challenges related to waste management, including inadequate disposal systems, a lack of awareness and willingness to segregate waste and insufficient resources. Students are the future of society, and they learn fast. If we inculcate the SWM behaviour in the early ages of their lives, it will help society. This study evaluates the effectiveness of a Social Learning Theory (SLT)-based intervention designed to enhance sustainable waste management practices among middle-stage students. Using a pre-experimental pretest – post test design, the study assessed 339 students (aged 10-15 years) from three rural schools in Halol, Gujarat. Students were evaluated on three SLT constructs: cognitive understanding, outcome expectancies, and behavioural performance—a comprehensive 30-hour intervention was conducted. The findings showed the significant improvement across all three constructs: cognitive understanding increased the most by 123.5% with $p<0.001$, cohen $d = 3.24$, outcome expectancies improved by 21.7% with $p<0.001$, cohen $d = 1.92$, and behavioural performance showed enhancement by 67.5% with a large effect size of 0.89. Contrary to theoretical expectations, no significant correlations were found among the three SLT constructs, and structural equation modelling (SEM) had an excellent fit to the data: $X^{2(0)} = 6.02e-13$, $CFI = 1.000$, $RMSEA = 0.000$, $SRMR = 0.000$. However, the model revealed no significant predictive relationships among the constructs. The study suggested that education policymakers use SLT in schools to enhance behaviour towards solid waste management (SWM).

Keywords: Sustainable, waste management, social learning theory, rural schools, intervention, SEM model

* Ph.D. Scholar, The Maharaja Sayajirao University of Baroda, SD girls hall, Vadodara
Email : garg.astha1022@gmail.com

Introduction

Effective waste management is pivotal for promoting environmental sustainability and fostering responsible behaviour. Preschool is an important phase of life when behaviours are shaped, habits are formed and basic behaviours are acquired (Kotler et al., 2012). However, rural schools often face inadequate waste disposal systems, a lack of awareness, limited resources and poor practices, contributing to environmental degradation. Despite initiatives promoting waste management education, the behavioural impact on students remains limited, as many programs focus only on theoretical knowledge without promoting practical behavioural change.

In rural India, where awareness about waste management is low, interventions must incorporate behavioural theories to drive long-term impact. Social Learning Theory (SLT), introduced by Albert Bandura (1977), posits that individuals learn behaviours through observation, imitation, and reinforcement. Bandra (1986) explained the essential principles of social learning theory and modelling with concepts. By modelling proper waste management practices, providing feedback, and offering hands-on experiences, students are more likely to adopt sustainable behaviours. SLT also emphasises self-efficacy, where individuals gain confidence in their ability to perform specific behaviours through repeated practice and positive reinforcement. Social learning theory argues that human behaviours are shaped by cognitive, behavioural

environmental interactions (Ergun, 2002; Ersan, 2016).

Theoretical Framework: Social Learning Theory (SLT)

SLT offers a comprehensive framework for understanding how individuals acquire and maintain behaviours through social interaction. The intervention program applied three core SLT principles:

- 1. Observational Learning:** Students learned waste management practices by watching teachers model proper behaviour, including waste segregation, recycling and composting.
- 2. Reinforcement:** Teachers provided positive feedback and correction during practical sessions, reinforcing correct practices and motivating students.
- 3. Self-Efficacy and Practice:** Students participated in hands-on waste management activities, such as waste segregation, composting, and recycling. This enhanced their confidence and ability to perform sustainable practices.

Applying SLT principles, the intervention aimed to promote long-term behavioural change among students, equipping them with the skills and motivation to adopt responsible waste management practices.

Research Problem

SWM assessment in three rural schools exhibited limited cognitive understanding, low outcome expectancies and poor behavioural performance. This highlighted the need for targeted intervention

programs to address rural school gaps through social learning theory.

Research Objectives

The primary objective of this study is to evaluate the effectiveness of an SLT-based intervention program in enhancing waste management behaviour among students in three rural schools in Halol, Gujarat.

- To develop need-based SLT-driven intervention for rural schools, middle stage (6th- 8th) grade students.
- To evaluate the effectiveness of the SLT-based intervention in enhancing cognitive understanding, outcome expectancies, and behavioural performance.
- To assess the influence of independent variables (gender, age, and grade) on the effectiveness of the SLT-based intervention.

Hypotheses

- **H1:** There is a significant impact on students' cognitive understanding, outcome expectancies, and behavioural performance after the SLT-based intervention program.
- **H2:** A significant positive relationship exists between students' cognitive understanding, outcome expectancies, and behavioural performance after the SLT-based intervention program.
- **H3:** Post-intervention cognitive understanding significantly predicts students' outcome expectancies, and both cognitive

understanding and outcome expectancies significantly predict behavioural performance related to solid waste management through the Structural Equation Model (SEM).

Methodology

This study used a pre-experimental one-group pre-test–post-test design to evaluate the effectiveness of a Social Learning Theory (SLT)-based intervention on students' cognitive understanding, outcome expectancies, and behavioural performance regarding solid waste management. All participating students were assessed using a structured questionnaire before and after the intervention to measure changes across the three SLT domains. Three rural schools from Halol Taluka, Gujarat, were selected using purposive sampling, based on accessibility and school willingness to participate. Students from Grades 6, 7, and 8 within each school were selected using a systematic random sampling technique. Specifically, every third student on the class roster was selected, yielding an initial sample of 384 students. Structured questionnaires were distributed to all 384 selected students. Of these, 339 questionnaires were returned fully completed, and only those were considered for analysis.

The **pre-test** was conducted in **January 2024** to assess the baseline levels of students' knowledge, attitudes, and practices related to solid waste management. Based on these results, a **customised intervention program**

was designed and implemented. The **post-test** was administered in **September 2024**, following the completion of the 30-hour intervention.

A structured questionnaire based on the SLT framework was developed for data collection. The tool comprised three key sections:

- **Cognitive Understanding:** This section included 85 items with both positive and negative statements. Each item was scored dichotomously; correct responses were scored 1, while incorrect and “I do not know” responses were scored 0.
- **Outcome Expectancies:** This domain included 25 items, measured on a 3-point Likert scale: agree, neutral, and disagree and ascribed scores were 3,2,1, respectively
- **Behavioural Performance:** This section included 18 items assessing the frequency of sustainable behaviours using a 5-point scale; good practice scored 5, and poor practice scored 1.

Reliability

To ensure internal consistency, Cronbach’s alpha was computed for the overall instrument and the three SLT constructs. The reliability coefficient for the complete tool was found to be $\alpha = 0.88$, indicating high reliability.

Data Collection and Analysis

Quantitative data collected through the structured questionnaire were analysed

using IBM SPSS Statistics (Version 20) and Jamovi (Version 2.6.44), with the SEMJ module for structural equation modelling. Data were analysed using IBM SPSS Statistics (Version 20) and Jamovi (with the SEMLj module). Descriptive statistics were used to summarise demographic and baseline variables. The Paired-t test and Wilcoxon signed-rank test assessed pre-post changes in students’. Pearson’s correlation examined relationships among post-test scores across the SLT constructs. Finally, structural equation modelling (SEM) tested the hypothesised SLT path model. Model fit was evaluated using indices such as CFI, RMSEA, SRMR, and χ^2 ; standardised path coefficients and significance values were reported. The analysis followed a multi-step approach to address the research objectives.

Findings

Development of the SLT-based intervention program

The intervention program was designed after the pre-test using Bandura’s Social Learning Theory (SLT). SLT emphasises that learning occurs through observation, imitation, modelling, and reinforcement in a social context (**Bandura, 1965**). A total of 30 hours of the intervention program was delivered over 1.5 months. The intervention aimed to enhance students’ cognitive understanding, outcome expectancies, and behavioural performance related to solid waste management (SWM) by using education techniques rooted in the SLT domains of

attention, retention, reproduction, and motivation. Twelve educational modules were developed and delivered in Hindi for rural students to understand better. The duration of each module was kept at 12-13 minutes with high-quality, real-time videos. Modules corresponded to specific waste categories and SWM practices, incorporating theoretical explanations and hands-on demonstrations. Group-based tasks such as waste audits, composting activities and poster-making supported behaviour modelling and social reinforcement. Prizes were distributed to the winning team for each activity to boost the motivation. Each module and

material was carefully aligned with the components of SLT: attention, retention, reproduction and motivation.

Background information

The study included 339 students from three rural schools in grades 6th to 8th in Halol, Gujarat. As shown in Table 1, most students were aged 12-13 years (65.5 per cent), with a mean age of 11.39 years and an SD of 8.98. Males represented 63.7 per cent of the total students. The distribution across academic grades was relatively balanced, 36.6 per cent from 6th grade, 33.6 per cent from 7th, and 33.6 % from 8th grade.

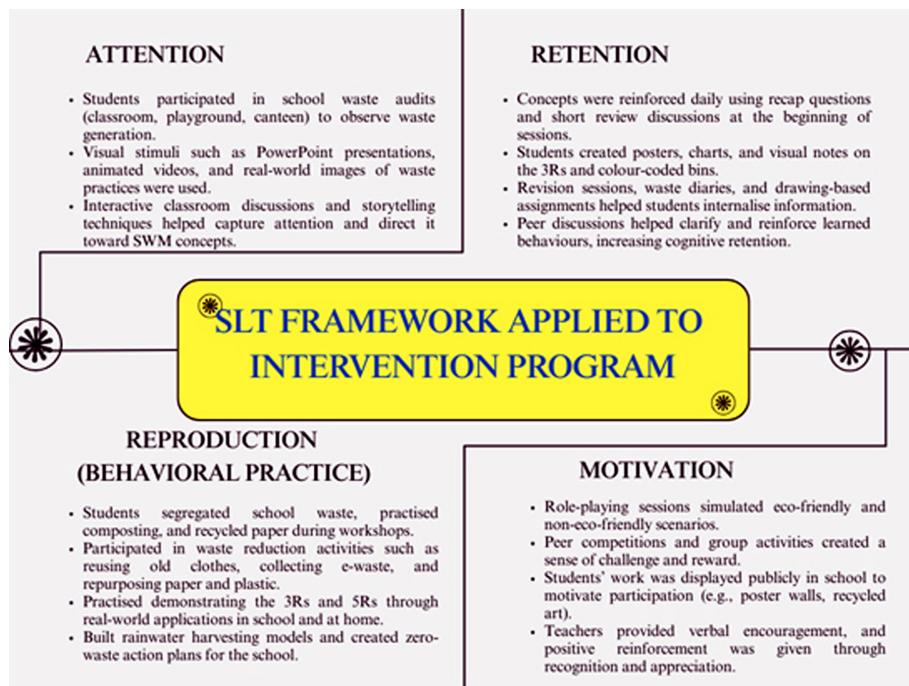
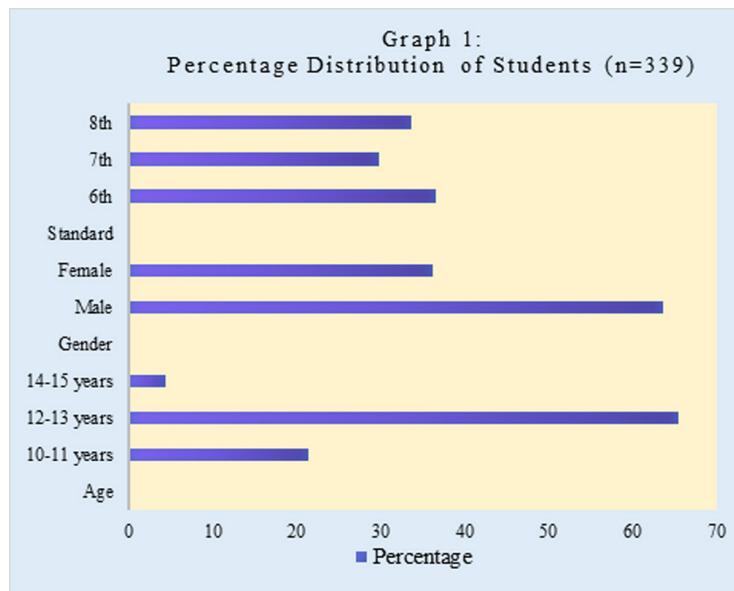



Figure 1 – SLT Framework
Source: Author

Table 1

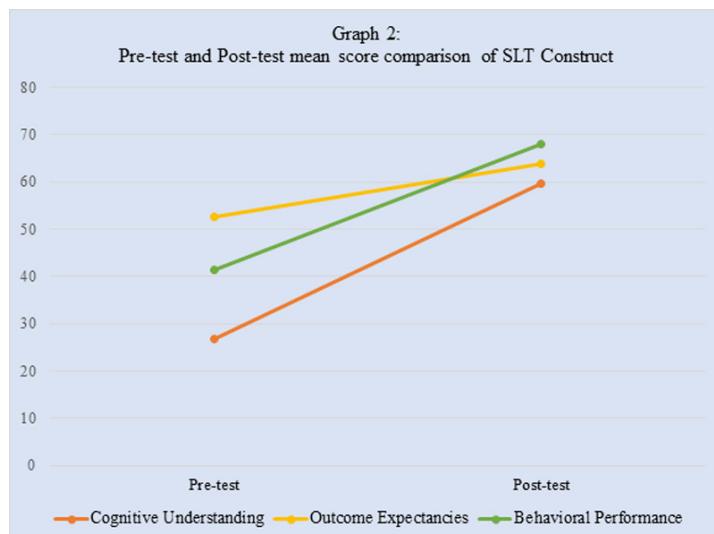
Frequency and percentage distribution of the students according to their background information.

Background Information of the students	Students (n=339)	
	<i>f</i>	%
Age (in years)		
10-11 years	73	21.5
12-13 years	222	65.5
14-15 years	44	13
Gender		
Male	216	63.7
Female	133	36.3
Standard		
6th Standard	124	36.6
7th Standard	101	29.8
8th Standard	114	33.6

Effectiveness of the SLT-Based Intervention

The intervention resulted in substantial improvements across all three Social Learning Theory constructs (Table 2). Cognitive Understanding scored more than doubled from pre-test ($M= 26.70$,

$SD = 8.05$) to post-test ($M= 59.68$, $SD=6.78$), with skewness and kurtosis lying between -1 and 1, showing normal distribution of the scores. Outcome Expectancies showed moderate improvement from pre-test ($M=52.49$, $SD = 4.17$) to post-test ($M = 63.90$, $SD = 3.90$) with a standard distribution


curve, followed by the Behavioural Performance demonstrated the most substantial relative improvement, increasing from pre-test ($M = 41.25$, $SD = 6.47$) to post-test ($M = 69.12$, $SD = 2.45$) with highly skewed data.

As shown in Table 3, the paired t-tests revealed statistically significant improvements in both cognitive understanding ($t = -59.55$, $p < 0.001$) and outcome expectancies ($t = -35.35$, $p < 0.001$), with large effect sizes

Table 2

Descriptive Statistics of SLT Constructs Before and After the Intervention (n =339)

SLT Construct	Pre-test		Post-test		Change in per cent
	Mean (S.D.)	Skewness (Kurtosis)	Mean S.D.	Skewness Kurtosis	
Cognitive Understanding	26.70 (8.05)	0.11 (-0.18)	59.68 (6.78)	0.23 (-0.69)	123.5%
Outcome Expectancies	52.49 (4.17)	-0.09 (-0.48)	63.90 (3.90)	-0.56 (0.07)	21.7%
Behavioral Performance	41.25 (6.47)	3.53 (15.74)	68.12 (2.45)	2.67 (12.89)	67.5%

Testing of Research Hypotheses

- H1:** There is a significant impact on students' cognitive understanding, outcome expectancies, and behavioural performance after the SLT-based intervention program.

(Cohen's $d = 3.23$ and 1.92 , respectively). Table 4 presents the result of the Wilcoxon signed-rank test for behavioural performance. The test revealed a statistically significant improvement ($Z = -15.96$, $p < 0.001$) with a considerable effect size (effect size $r = 0.89$). Hence,

the research hypothesis is accepted. The SLT-based intervention program significantly positively impacted students' cognitive understanding, outcome expectancies, and behavioural performance related to solid waste management.

Outcome Expectancies was negligible; a weak and non-significant relationship was found between behavioural performance and cognitive understanding and Outcome expectancies. Hence, the null hypothesis is accepted. Despite significant improvements, there were

Table 3
Paired-Sample t-Test between pre- and post-test (n=339)

Construct	Mean (SD)	t-value	df	p-value	Cohen's d
Cognitive Understanding	-32.97 (10.19)	-59.55	338	0.00	3.24
Outcome Expectancies	-11.40 (5.94)	-35.35	338	0.00	1.92

Note. Negative mean differences indicate improvement from pre-test to post-test

Table 4
Wilcoxon Signed Rank Test to compare pre- and post-test (n=339)

Construct	Ranks	Mean Rank	Sum of Ranks	Z	p-value	Effect size
Behavioural Performance	Negative	12.50	37.50	-15.96	0.001	0.89
	Positive	170.91	57253.50			

- H2:** A significant positive relationship exists between students' cognitive understanding, outcome expectancies, and behavioural performance after the SLT-based intervention program.

To test the H2, Pearson's correlation coefficients were calculated among the post-intervention scores of the three SLT constructs. Table 5 shows that none of the Pearson correlations among the SLT constructs after the intervention were statistically significant. The correlation between cognitive Understanding and

no significant relationships among SLT constructs.

- H3:** Post-intervention cognitive understanding significantly predicts students' outcome expectancies, and both cognitive understanding and outcome expectancies significantly predict behavioural performance through the Structural Equation Model (SEM).

To test H3, structural equation modelling (SEM) was conducted in Jamovi. (SEM) Syntax was used. The relationship was

Table 5**Pearson Correlation Matrix Among SLT Constructs of Post-Test**

(n=339)

Construct	Cognitive Understanding	Outcome Expectancies	Behavioural Performance
Cognitive Understanding	-	-	-
Outcome Expectancies	0.018	-	-
Behavioural Performance	0.074	0.032	-

Note. All correlations are Pearson's r. None are statistically significant at $p < .05$.

entered as “Outcome Expectancies \cong cognitive understanding” “, Behavioural performance \cong cognitive understanding + outcome expectancies”. The structural equation model demonstrated excellent fit to the data: $\chi^2(0) = 6.02e-13$, CFI = 1.000, RMSEA = 0.000, SRMR = 0.000. However, as shown in Table 6, none of the structural path coefficients reached statistical significance. The path analysis shows that the cognitive understanding of outcome expectancies was positive but negligible ($\beta = 0.02$, $p = 0.74$). Similarly, outcome expectancies did

not significantly predict behavioural performance ($\beta = 0.04$, $p = 0.54$). The direct path from cognitive understanding to behavioural performance was negative and again non-significant ($\beta = -0.08$, $p = 0.16$). The findings revealed that H3 cannot be accepted. Post-intervention cognitive understanding did not significantly predict students' outcome expectancies, and neither cognitive understanding nor outcome expectancies significantly predicted behavioural performance.

Table 6**Standardised Path Coefficient and Significance Levels for the SLT-Based SEM Model (n=339)**

Predictor \rightarrow Outcome	β	SE	Z	p	95% CI (L - U)
Cognitive Understanding \rightarrow Outcome Expectancies	0.02	0.03	0.33	0.74	-0.05 to 0.07
Outcome Expectancies \rightarrow Behavioural Performance	0.04	0.02	0.60	0.54	-0.03 - 0.05
Cognitive Understanding \rightarrow Behavioural Performance	-0.08	0.01	-1.38	0.16	-0.04 to 0.01

Note. All coefficients are standardised. Model fit indices: $\chi^2(0) = 6.02e-13$, CFI = 1.000, RMSEA = 0.000, SRMR = 0.000.

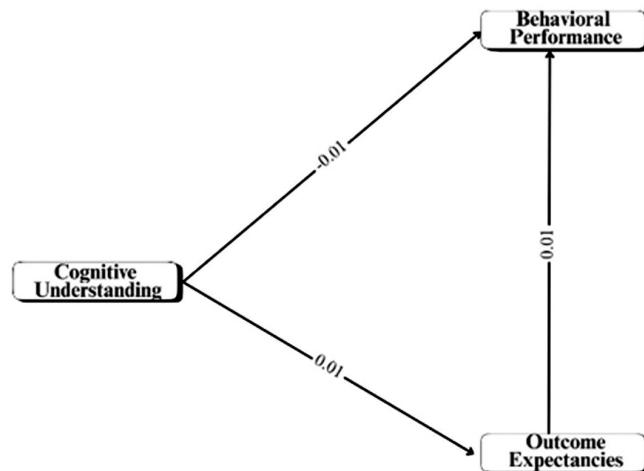


Figure 2: Path Analysis Structural Equation Model

Discussion

The findings of this study provide strong evidence for the effectiveness of the SLT-based intervention in improving students' abilities related to solid waste management. The significant improvements across all three domains, cognitive understanding, outcome expectancies, and behavioural performance, showed notable changes in the 30-hour intervention program, successfully addressing its objectives. (Alkan & Cavusoglu, 2024) Their research consisted of 20 sessions over four months based on the stages defined in social learning theory. They found a significant effect on social learning theory in the training process, which is effective in acquiring the desired behaviour through attention, retention, reproduction and motivation.

Despite the significant improvements in all three SLT constructs, the lack of significant correlations and the non-significant path coefficients in the

structural equation model present an intriguing paradox. Several factors might explain this disconnect. First, behaviour change is a multifaceted process often requiring time to integrate new knowledge and attitudes into behavioural patterns. The immediate post-test timing may not have captured the delayed effects or the eventual integration of the SLT constructs. (Ersan 2016) mentioned in their study that behaviour feedback (reinforcement) of adults and peers also affects the formation of behaviour. (Houthuret al., 2019) indicated a significant gap between knowledge and practice in their research. The study concluded that despite sufficient knowledge regarding sanitation, poor attitudes hindered the conversion of the knowledge into practice. Weak correlations were found in their study.

Second, contextual factors may have moderated the relationships among the SLT constructs. For instance, limited waste management infrastructure in rural areas, family practices, peer

influence, lack of resources and socio-economic condition of the family might have affected the students' abilities to apply their newly acquired cognitive skills and behaviour, regardless of their improvements in these domains. (Ahmad et al., 2015) Also showed no relationship between the three domains regarding sustainable environmental practices. (Paghiasian, 2017) showed in their study that the students' awareness of solid waste management did not influence their practices in terms of disposal.

Third, the age of the participants (predominantly 10-13 years) might have influenced the nature of the relationships among knowledge, attitudes and behaviours. Children are still developing environmental values at this developmental stage and may not yet have fully integrated their knowledge and attitudes into consistent behavioural patterns. The study conducted by Mkhonto and Mnguni (2021) showed that a lack of motivation, the imbalance between didactic instructions, ineffective group work and inadequate learner support impacted the effectiveness of the intervention program.

Theoretical and Practical Implications

This research has important implications for both the theory and practice points of view. Theoretically, the research suggests that while Social Learning Theory provides a valuable framework for designing educational interventions,

the relationships among its key constructs may be more complex and influenced by time. This study's immediate independence of cognitive understanding, outcome expectancies, and behaviours suggests that these constructs may develop at different rates or through different mechanisms, especially in children.

From a practical perspective, the findings highlight the necessity of comprehensive intervention approaches that target each domain separately while providing sufficient time and reinforcement for their integration. Despite their relative independence, the successful improvement across all three domains suggests that multi-component interventions addressing cognitive, belief and behaviours simultaneously may be more effective than sequential approaches that assume automatic evaluation from one domain to another.

Educational intervention should incorporate a well-balanced combination of cognitive, belief, and behavioural components, as implemented in the current study. However, they should also incorporate strategies to strengthen the connections among these SLT constructs.

Conclusion

This study demonstrated that a Social Learning Theory-based intervention can substantially enhance students' cognitive understanding, outcome expectancies, and behavioural practices related to

solid waste management in rural schools. While significant improvements were observed in all three domains, the absence of strong inter-construct relationships suggests that behaviour change, especially among students, may require sustained reinforcement, time, and supportive environmental structures. The findings underscore the value of multi-faceted educational interventions grounded in behavioural theory, while also highlighting the need for longitudinal research to capture the evolving interplay between cognitive understanding, beliefs and actions.

Limitations and future research directions

When analysing the results of this research, it is important to recognise the study's limitations. The pre-experimental design's lack of a control group limits causal inferences regarding the intervention's effectiveness. Although the pre-post improvements were substantial and statistically significant, other factors might have influenced them. The immediate post-test timing may not have captured delayed effects or the relationships among the SLT constructs over time. Future research would benefit from longitudinal designs that track changes in behaviours multiple times. Such designs would provide valuable insights into the temporal dynamics of behaviour change and the potential delayed emergence of significant relationships among the SLT constructs. Furthermore, children trying to satisfy their teachers may be

susceptible to social desirability bias regarding self-reported behavioural measurements. Studies should consider incorporating objective behavioural measures or observational data to complement self-reports.

The study was carried out in a specific cultural and geographical context, rural schools in Halol, Gujarat. The generalizability of the findings to other contexts, such as urban schools or different cultural settings, remains to be established. Future research should explore the efficacy of similar interventions.

Funding Declaration

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

- Ahmad, J.; Noor, S.M. & Ismail, N (2015) Investigating Students' Environmental Knowledge, Attitude, Practice and Communication. *Asian Social Science*, 11(16).
- Alkan, I. B., & Cavusoglu, H. (2024). Examining the effectiveness of education based on social learning theory in fostering self-care and social skills in school children: A randomised controlled trial. *Journal of Pediatric Nursing*, 78, e448–e459. <https://doi.org/10.1016/j.pedn.2024.08.007>
- Amsari, D., Wahyuni, E., & Fadhilaturrahmi, F. (2024). The Social Learning Theory: Albert Bandura for

Elementary School Students. *Jurnal Basicedu*, 8(2), 1654–1662. <https://doi.org/10.31004/basicedu.v8i2.7247>

- Ata, E. (2018). Evaluation of Adult Environmental Awareness Behaviours in Social Learning Theory according to Perceptions of Primary and Secondary School Students. *International Journal of Higher Education*, 7(6), 54. <https://doi.org/10.5430/ijhe.v7n6p54>.
- Bandura, A. (1965). Influence of models' reinforcement contingencies on the acquisition of imitative responses. *Journal of personality and social psychology*, 1(6), 589. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioural change. *Psychological review*, 84(2), 191.
- Bandura, A. (1986). Social Learning Theory. Prentice Hall.
- Bandura, A. (2001). Social Cognitive Theory: an Agentic Perspective. *Annual Review of Psychology*, 52(1), 1–26. <https://doi.org/10.1146/annurev.psych.52.1.1>.
- Bandura, A. (2006b). Toward a psychology of human agency. *Perspectives on Psychological Science*, 1(2), 164. Bandura, A. (2006a). Autobiography. MG Lindzey & WM Runyan (Eds.), *A history of psychology in autobiography* (Vol. IX). Washington, DC: American Psychological Association.
- Chawla, L. and Cushing, D.B. (2007). Education For Strategic Environment Behavior. *Environmental Education Research*, 13(4), 437-45. <https://doi.org/10.1080/13504620701581539>.
- Chawla, L., & Cushing Flanders D. (2007). Education for strategic environmental behavior. *Environmental Education Research*, 13, 437-452. doi:10.1080/13504620701581539.
- Dr Dorcas Oluremi FAREO, "Influence of Principals' Leadership Styles on Senior Secondary School Students' Academic Achievement in Gombi Educational Zone, Admawa State" *International Journal of Research and Innovation in Social Science (IJRISS)*, Volume-6-issue-8, pp.30-35, August 2022 URL: <https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-6-issue-8/30-35.pdf>.
- Ergun, M. (2002). Motivation in the classroom. *Class management*. Ankara: Pegem.
- Erşan, Ş. (2016). An overview of play in terms of socialization. *Current advances in education*, 560-569.
- Hothur, R., Arepalli, S., & Bhadreshwara, A. D. V. (2019). A KAP study on water, sanitation and hygiene among residents of Parla village, Kurnool district, Andhra Pradesh. *International Journal of Community Medicine and Public Health*, 6(5), 2081. <https://doi.org/10.18203/2394-6040.ijcmph20191823>
- Kotler, J. A., Schiffman, J. M., & Hanson, K. G. (2012). The Influence of Media Characters on Children's Food Choices. *Journal of Health Communication*, 17(8), 886–898. <https://doi.org/10.1080/10810730.2011.650822>
- Louise Chawla & Debra Flanders Cushing (2007) Education for strategic environmental behaviour, *Environmental Education Research*, 13:4, 437-452, DOI: 10.1080/13504620701581539

- Mary Rachelle R Wapano, PhD, Loressa De Claro Paguta, MA, "Literature Review on the Relationship between Identity Formation and Meaning in Life Among Emerging Adults" *International Journal of Research and Innovation in Social Science* (IJRISS), Volume-6-issue-8, pp.14-22 August 2022 DOI: <https://dx.doi.org/10.47772/IJRISS.2022.6802>
- Mary Rachelle Reyes-Wapano "A Path Analysis of the Relationships among Parenting Styles, Emotional Intelligence and Resilience" *International Journal of Research and Innovation in Social Science* (IJRISS) Volume-6-issue-8, pp.07-13 August 2022 DOI: <https://dx.doi.org/10.47772/IJRISS.2022.6801>
- McCormick, M. J., & Martinko, M. J. (2004). Identifying leader social cognitions: Integrating the causal reasoning perspective into social cognitive theory. *Journal of Leadership & Organisational Studies*, 10(4), 2–11.
- Mkhonto, B., & Mnguni, L. (2021). The impact of a Rural School-Based Solid Waste Management Project on learners' perceptions, attitudes and understanding of recycling. *Recycling*, 6(4), 71. <https://doi.org/10.3390/recycling6040071>
- Monroe, M. C., Plate, R. R., Oxarart, A., Bowers, A., & Chaves, W. A. (2017). Identifying effective climate change education strategies: a systematic review of the research. *Environmental Education Research*, 25(6), 791–812. <https://doi.org/10.1080/13504622.2017.1360842>
- Muro, M., & Jeffrey, P. (2008). A critical review of the theory and application of social learning in participatory natural resource management processes. *Journal of environmental planning and management*, 51(3), 325–344.
- Paghasian, M. C. (2017). Awareness and Practices on Solid Waste Management among College Students in Mindanao State University Maigo School of Arts and Trades. Atlantis Press. <https://doi.org/10.2991/icet-17.2017.2>
- Stern, M. J., Powell, R. B., & Hill, D. (2014). Environmental Education Program Evaluation in the New Millennium: What Do We Measure and What Have We Learned? *Environmental Education Research*, 20, 581–611. <http://dx.doi.org/10.1080/13504622.2013.838749>
- Vachova, L., Sedlakova, E., & Kvintova, J. (2023). Academic Self-efficacy as a Precondition for Critical Thinking in University Students. *Pegem Egitim ve Ogretim Dergisi*, 13(2), 328–334. <https://doi.org/10.47750/pegegog.13.02.36>
- Zhang, J. (2022). The Influence of Piaget in the Field of Learning Science. *Higher Education Studies*, 12(3), 162. <https://doi.org/10.5539/hes.v12n3p162>
- Zhou, J., & Guo, W. (2016). Imitation in undergraduate teaching and learning. *Journal of Effective Teaching*, 16(3), 5–27. <https://doi.org/10.1111/j.1524-4725.1978.tb00557.x>

Environment protection and Conservation – the role of religions and its rituals : an Indian Scenario

Dr. Ganga .G*

Abstract

The present paper shortly reviews how rituals, customs and traditional knowledge beliefs help in the conservation of the environment. The paper highlights how Indian traditions, sacred groves, sacred plants and animals, Indian art and literature have played a role in the conservation of nature and its bio-resources. This paper will discuss community participation and also the manner in which religious means of protection are typically exploited for eco-conservation. This paper conjointly provides parallel insights into how spiritual customs and ceremonies that are historically followed facilitate environmental conservation and protection.

Keywords: *Biodiversity, conservation, environment protection, traditional knowledge, rituals*

Introduction

Environmental protection and conservation of biodiversity are of utmost importance and need of the hour in today's times. Since the dawn of human civilisation, conservation of the environment and its wealth have been the main concerns. Efficient conservation will be doable by intensive participation which can be made possible by extensive community participation and their understanding its values. One of the essential resources for understanding native societies and promoting character

conservation are the ritual beliefs of Indigenous people. (Sodhi and Chandra, 2020).

Mythology has been a part of every faith that exists. It is science that explores myths, fables and legends, based on remote events to the current day. Science and the scientific community investigate evidence-based events or incidents that support common myths; several of those myths have served the aim of environmental conservation and protection. Significance has been given

* Assistant Professor in Microbiology, Sree Ayyappa College, Eramallikara, Chegannur, Allapuzha Distict Kerala Stata, India. Corresponding Author:drgangaimb@gmail.com
ORCID ID :<https://orcid.org/0000-0001-8008-1936>

in mythology to the worship of Water, Fire and Sun, the five necessary parts of the earth. (Sodhi and Chandra, 2020).

Mountains, hills, rivers and caves are being worshipped as part of rituals of many communities, thence protections are being given considering their holiness, by worshipping specific animal species, birds, reptiles, fishes and plant species. Sacred books such as the Vedas and Upanishads, the Bible, Quran and the Bhagavat-Gita give a clear view on the relations of humans with nature. These books incorporate stories to bring values and a sense of protection and suggest the idea of conservational importance through faith; historically, most faiths support the protection of earth and its environment according to Shah and Patel (2001). Traditionally, almost all religions support the protection of nature by incorporating devotional elements into traditional ritual practices. (Shah and Patel 2001). Worshipping plants and animals was found to be an indirect way to protect them from becoming extinct. Owing to its great benefits as medicine, food, textiles, etc, this has played an important role in the religious culture and customs of Hinduism, Jainism, Buddhism, Sikhism, Jainism etc. All the religious books from India support environmental protection. The *Rigveda* verses 1/90/6, 7,8 say:

“madhu vātāḥ ṛtāyate madhu kṣaranti sindhavāḥ mādvih nah̄ santuṣadhi. madhu naktamutusāsu madhumatpārthiva rajah madhu kṣorastu suryah mādhirgābo bhavantu nah̄”. (Rajib Sarmah, 2015).

Verses say that rivers have blessed us with pure water. Sun gives us light, air keeps us alive, vegetation gives us food, and mountains and hills protect us. These words evoke divine intervention in the environment to bless and protect the environment and its inhabitants.

According to *Vrksayurvedah*-5, “dasakūpa sama vāpi dasa vāpi sama hradaḥ dasahrada samah putro dasaputra sama drumah̄”.

Verses say that planting a tree is as beneficial as having ten sons. Rigvedic people exploited nature in a very judicious way; there is a comparison of trees to human beings, Gods, etc. They beseeched Indra (God) to retain trees in forests and sons in their fathers. (*Rig-veda*,8/1/13).

In the Bible, there are many verses to lend religious insights on environmental protection. **Isaiah 43:20-21** says that all living beings on this earth are equal creations by God. The weather, plants and animals are all part of the environment which God created on Earth. The Bible says that they are as much a part of God's creation as mankind itself: **Job 37:14-18** says that, “Because I provide water in the desert and streams in the wasteland to give drink to my people, my chosen ones, the people I created for me, the owls and jackals adore me and may laud me”.

Quran the holy book of Islam religion also emphasizes the importance of environmental protection. The wordings of the Quran summarise that the environment is one of the key elements

that needs to be considered and given utmost importance. Natural resources are closely related to the existence of life as a whole and it also believes that all living creatures are the gifts of God and need to be treated equally and to be protected with utmost care. According to the *Quran*, the word environment denotes a condition that describes everything that exists in the Universe. In the *Quran*, water is considered a key life-providing element; it describes life as being created through water and streams. The rain, rivers, and ocean are considered to be the protectors of life. **Quran, 16:65** states that the earth has life because Allah has sent down rain from the heavens. **Quran, 50:9** mentions that, "Grain from the harvest and gardens have grown as a result of the rain that we have brought down from heaven."

Several books cite the necessary medicinal plant species and also mention the price of exploitation of such plant species; such therapeutically important plant species are considered to be the elixir of life. Owing solely to their mythological significance, several sacred plants and animals are being protected and efforts are being made to conserve them through religious beliefs. (Dolon Nath, 2015); (Ambasta, 1986); (Sahu et.al 2013)

The present article provides a window to how Indian traditions, their values, customs and rituals are meant for the eco-conservation and restoration of the environment. The paper describes how literature, beliefs, history and practices mirror the conservation aspects. The

paper additionally offers a way to drill conservation responsibility in humans through spirituality and religion.

Indian traditions, practices and values

Sustainable development and conservation of natural resources are the major global concerns raised ever since the Stockholm Conference of Environment in 1992 and the United Nations Conference on Human Environment and Development (Earth Summit). However, long-term Indian culture and traditions have already pointed to a harmonious life with nature and its life. The day-to-day lives of Indian citizens are filled with extensive religious rituals, folklore, arts and crafts and cultural practices.

According to Sitakant Mahapatra (1992), ancient communities of India lived in harmony with nature by the tradition of veneration for the elements that are involved in the protection of the ecosystem. Their ethics and values were embedded in safeguarding natural resources with whose help they live. Their tremendous knowledge and understanding of nature and its conservation was commendable.. They have protected it with a sense of responsibility and pride and they believed that the environment cannot be an object of exploitation but is an object of veneration. Hence, they added a spirit of devotion and brought spiritual elements to impose worshipping the Earth Goddess. Hence, worship of the Earth as a deity, became a part of many indigenous cultures, especially

in famine times to get better yield and fruitful benefits. Bondage and intimacy between man and the ecosystem around his habitat were strengthened. Certain tribal communities of India are still fully dependent on their habitat and they live in harmony with nature.

In Hindu mythology, importance was given to birds and animals and they were worshipped as divine forms, thereby making their life secure. There were fourteen *avatars* (births) of god in the forms of animals, reptile and birds such as, Matsya, Kurma, Varaha, Nrisingha etc. It was believed that each species has a specific role to continue the cycle of life. According to the Vedas, killing of nature's scavengers was considered to be sinful and was forbidden.

In India, supernatural powers were ascribed to nature as people worship plants, animals wind, sun, moon, water, fire, mountains rivers, birds, fishes, reptiles, etc. Temples and worship places were separately made and natural habitats were made for their deities. Sacred groves and forests were preserved and become part of their worship culture. India being a multi-religious and multi-cultural society, respect for nature is inherent. All practised faiths believe in the principle and teach the worshippers that environment and their nature are the creations of God. All these religions proclaim the obligation of humans to protect nature; India's profound religious practices and their traditional ethics and sound relationship with nature are obvious in conservation.

Hence, nature conservation is not a new concept as far as Indian traditions are concerned. Concepts of interrelationship and interdependence were mentioned in Indian scriptures like the *Upanishads* and the epics like *Ramayan* and the *Gita* etc.

Role of Art and Literature of India in Eco Conservation

Most of the art forms, Indian sculptures, paintings and architectural ornamentation reflect the love and reverence of nature and wildlife. Hence, most our Indian art forms pay great attention to the conservation aspects also. Protection of nature and conservation of natural resources was an innate feature of the Indian essence and faith, and hence, is reflected in many religious acts, folklore, art and culture, infusing every aspect of routine life. Indian civilization is one of the oldest civilizations in the world. Cave paintings at Bhimbetka in Central India depict the harmony between humans and animals that existed during the era. The coexistence of wildlife and humans is depicted in the arts and sculptures obtained from the reminiscent of Indus valley civilization. Scriptures and paintings that depict their interaction with nature are found indoors and walls of worship, places, art galleries and heritage centres can be considered as a means used to enhance the intrinsic relationship between man and nature.


Indian literature mirrors the deep understanding of nature and its influence on humans. Mahakavi Kalidasa was a great lover of nature of the ancient period and *Meghaduta* and *Ritusamhara*

evoke an interest in nature as a theme for many of his successors. Stories found in the *Panchatantra*, the *Shuka-saptati*, and *Hitopadesha* are the metaphorical representations of various animal species (Nair, 2020a).

Role of the sacred grove or small forest ecosystem in India for eco-protection

The concept of the sacred grove was developed to protect small forest patches of the village with valuable medicinal plants indigenous to a specific locality. Sacred groves played a vital role in maintaining folk medicine and traditional plant-based therapies with rare plant species. There are sacred groves that are dedicated to village deities, with the sole aim of protecting them. There are sacred groves in several Indian states. It has been noted that there are many sacred groves in the northern Indian states of Maharashtra and the southern Indian states of Kerala, Karnataka and Tamil Nadu. In states like Kerala, traditionally, every village had about 10-15 sacred groves though the number is tremendously reducing due to urbanization and human encroachments.

According to Madhav Gadgil (1976), sacred groves in India help in maintaining rich biodiversity and hence are considered to be mini Western Ghats. Maintaining and worshipping sacred groves as a part of tradition and ritual practices had not only contributed to forest protection but also helped in protecting several precious flora and fauna that inhabited it. In several regions of India, in addition to sacred forests, many sacred ponds

Sacred groves in Kerala:
protected areas as a token of
conservation of nature

that are connected to temples are
customarily preserved.

Sacred ponds also play a significant role in the protection of certain endangered species of turtles, rare fishes, crocodiles, water animals & fishes, and associated birds and plant species. (Gadgil and Vartak, 1976); (Arora, Ranjit, 1997); (Bain1, 2017; (Nair, 2020b). Sacred groves provide ecosystem services such as conservation of biodiversity, regulation of water cycle, temperature regulation, conservation of air, soil, and water, carbon sequestration, pollination, and food corridor. (Chandran and Hughes ,1997)

Role of sacred plants and animal in eco-conservation in India

For mythical, religious and festival purposes, a wide variety of plant and animal species have been utilised. Dolon

Nath (Dolon Nath, 2015). Many tree species have traditionally been revered, and peepal trees have been prohibited from being cut down (*Ficus religiosa*). This group includes trees such as the banyan tree (*Ficus 'bengelensis*) and the Khejdi tree (*Prosopis cineraria*). Some plants are regarded sacred by numerous cultures and religious sects in India, and several trees and herbs cultivated on temple grounds are considered sacred and are not allowed to be touched. Tulsi, neem, champa, elanji, sandalwood, beetal nut, Asoka tree, coconut palm, juniper, lotus, pepper, hibiscus, and other plants were all preserved in this way. In Kerala, in accordance to Hindu custom, each boy or girl who is born under a traditional birth star will be connected with a specific plant or tree species/animals in such a way that every individual is given the responsibility to protect at least one plant and animal.

Traditional cultural attitudes, based on religious faith, have made a significant contribution to the conservation and propagation of various species of trees and plants in India. (Nair, 2020 a 2020b). In India, certain birds, rodents and reptiles are regarded sacred and serve as vehicles for gods and goddesses. The peacock was thought to be Lord Karthkeya's chariot, the eagle was thought to be Lord Vishnu's vehicle, and the blue rock pigeon was thought to be sacred and is protected in the Bengal region. The mouse represents Lord Ganapathy's vehicle, and the bull represents Lord Siva's. Elephants in Indian temples were given the highest respect and consideration.

In Kerala, there are multiple snake temples with little woods spread across wide swaths of land. Temples in Kasargod, Kerala, protect crocodiles. Feeding fishes are a tradition in many communities across India. One of the wealthiest temples in India called Padmanabhaswami temple at Thiruvananthapuram has Lord Vishnu reclining on a serpent which depicts a sign of respect towards reptiles. Tortoise is being protected and worshipped in South Indian temples.

Role of Indian history in conservation of nature

Asoka, the great Indian ruler, was a nature conservator and wildlife protector. His inscriptions on rocks and iron pillars concerned the loss of forests and the killing of numerous species protected nature. Even today, this is thought to be the first documented conservation measure (Nair 2020a). According to historical evidence, in 1730 AD, the Bishnoi communities in Rajasthan's Khejarli villagers staged a massive strike against the cutting of khejri (*Prosopis cineraria*) trees for the construction of the fort, which is regarded as the first major protest against deforestation and environmental conservation. (Bhatt and Rakesh, 2015; Bishnoi *et al* 2000).

The Chipko movement against deforestation, led by the village women of Gopeshwar village in Garhwal in the Himalaya, was another successful environmental effort. Their aggressive approach resulted in the preservation of 12,000 square kilometres of a crucial

water catchment area. (Petruzzello, Melissa.(ed.) 2018) Another successful conservation initiative was the Apiko movement in Karnataka's southern state. (Bhatt and Rakesh, 2015); (Bishnoi *et al* 2000).

Conclusion

In conclusion, it was observed that in India, the practice of nature conservation is deep-rooted within the culture and traditions of the country. It was also observed that rituals and customs were mainly meant to protect natural resources. Ancient culture and traditions of Indian society had contributed a lot to the conservation of natural ecosystems, plants, and animals. Government, conservation agencies and powerful laws alone cannot make a large movement in people for the values we look for in the conservation of environment. It was generally believed that people are inclined to value anything considered to be holy or sacred. Early humans made great efforts to protect such rare species with a vision of sustainable environmental protection under religious cover. The focus must be on changing the way we live in order to either directly or indirectly contribute to environmental protection for leisure and to the promotion of mental health in light of the stressful conditions we face in today's competitive society. Religious means of protection can be chosen to be the best way of evolving a conservation strategy that one can adopt for the keeping the earth, sustainable. It is need of the day to follow the steps of the ancients.

References

- Ambasta, S.P.,(1986.)The Useful Plants of India.In: Ramachandra, K. and Shri Kashyapa K. (eds), Publications and Information Directorate, CSIR, Hillside Road, New Delhi, India, pp.1-70.
- Arora, Ranjit K., (1997). Ethnobotany and its role in the conservation and use of Plant Genetic Resources in India, *Ethnobotany* 9: 6-15
- Bhatt, Rakesh., (2015.) 'Bishnois: The Ecological Stewards'. Onlineat http://www.ymparistojakehitys.fi/susopapers/Background_Paper_10_Rakesh_Bhatt.pdf. Retrieved March 27, 2018.
- Bishnoi, Vandana, and N.R. Bishnoi. (2000.) 'Bishnoism: An Eco-friendly Religion.' *Religion and Environment*. Edited by Krishna Ram Bishnoi and Narsi Ram Bishnoi. New Delhi: Commonwealth Publishers.
- Chandran, M.D.S., Hughes J.D., (1997) The sacred groves of South India: ecology, traditional communities, and religious change. *Soc Comp* 44:413-427.
- Dolon Nath, (2015) IJPRBS; Volume 4(3): 310-326
- Gadgil M, Vartak V.D.(1976) Sacred groves of Western Ghats of India. *Ecol Bot* 30:152–160
- Nair.S.M., 2020a. cultural traditions of nature conservation in India <http://ccrtindia.gov.in/readingroom/nscd/ch/ch11.php>.
- Nair S.M., (2020 b). Sacred groves foster a sense of togetherness and harmony:
- Protecting nature in and beyond India's tribal communities Kerala & Karnataka <https://indiantribalheritage.org/?p=20948#gsc>.
- Rajib Sarmah (2015) Environmental awareness in the Vedic literature: An assessment *International Journal of Sanskrit Research*; 1(4): 05-08 ISSN: 2394-7519 IJSR 2015; 1(4): 05-08
- Sahu P., Kumari A., Shweta S., Singh M. and Pandey, P.(2013). Sacred Plants and their Ethno Botanical Importance in Central India: A mini-review. *Int. J. of Pharm. & Life Sci.*, 3: 2910-2914. Abbreviated names of journals not recommended.
- Shah R., and Patel R., (2001).Study of Traditional Worshiping Plant of Borsad Taluka (Gujarat). *J. of Research Sci. and Tech.*, 1:69-73.
- Sitakant, Mahapatra.(1986) Modernization, and Ritual: Identity and Change in Santal Society, Oxford University Press, Calcutta, pp. ix + 170.
- Sodhi, I. S., and Chandra, S. (2020). Environmental Protection and Conservation in India. SOCRATES, 7(1 and 2), 1–12. <https://doi.org/10.5958/2347-6869.2019.00001.3>.
- Petruzzello, Melissa.(ed.) (2018)" Chipko movement". *Encyclopedia Britannica*,. <https://www.britannica.com/topic/Chipko-movement>. Accessed 16 February 2021.
- Worrel Kumar Bain., (2017). Conservation of Environment through Traditional Knowledge and Wisdom with Special Reference to Beliefs and Practices in Tribal India: An Overview Heritage: Journal of Multidisciplinary Studies in Archaeology 5 : 224 -243.

INSTRUCTIONS TO AUTHORS

Indian Journal of Environmental Education is an annual publication devoted to all branches of Environmental Sciences, relevant to India. It aims at conveying the message of global management, implementation, people's participation and the sustainable management of our natural and human resources.

MANUSCRIPTS

Papers/articles intended for publication in this journal should be the outcome of original research (field/laboratory), research reviews, environmental case-studies, success stories of environmental management, replicable models and school/college environmental project reports on any global or national environmental issues (*Popular articles are not welcome for this journal, but will be considered for **Eco News**.*).

Manuscripts should be sent preferably by e-mail to cpreec@gmail.com in Times New Roman font, size 12, 1.5 spacing.

Each manuscript should not exceed 2500 words. Inclusive of tables, diagrams, photographs and references, it should be within ten A4 size pages.

Manuscripts may be sent on a computer disk also, in MS Word 2007 format.

MAIN COMPONENTS OF A PAPER

- a. Title, author(s)'s name and postal and email address/es.
- b. Abstract: (About 5% of the total number of words of the paper).
- c. Key Words: Not more than six.
- d. Introduction, with background of the topic, its relevance and scope.
- e. Text, with sub-headings.
- f. References: To be listed in the order in which they are referred to and numbered in the Text.

For Papers: Last name of the author, initials (if more than one author, initials and name of the later authors), Year, Title of the Journal, Volume, Number, Initial and final pages.

For Book Reviews: Publisher, Place of publication and Year.

ILLUSTRATIONS

Originals of black and white photographs, line-drawings in black ink (double the size of the final print) are required. They should all be the author's originals. If not, permission to reprint them is entirely the author's responsibility.

COMMUNICATIONS / CORRESPONDENCE

All manuscripts are to be sent by e-mail or Registered Post (with acknowledgement due) or by Courier, to the Editor, Indian Journal of Environmental Education, C.P.R. Environmental Education Centre, 1, Eldams Road, Alwarpet, Chennai – 600 018. Tel: 044-48529990 / 42081758.

Receipt of the manuscript or its acceptance for publication will be intimated to the author. Unacceptable papers will be returned to the author, provided a self-addressed cover with postage stamps, are enclosed.

The decision of the Referees and Editor is final.

INDIAN JOURNAL OF ENVIRONMENTAL EDUCATION

C.P.R. Environmental Education Centre is a Centre of Excellence in Environmental Education, established jointly by the Ministry of Environment and Forests, Government of India, and the C.P. Ramaswami Aiyar Foundation.

The Centre has been set up to increase consciousness and knowledge about the environment and the major environmental problems facing the country today. It has been conducting a variety of programmes to spread awareness and interest among the public, including, teachers, students, voluntary workers, educators, farmers, women and youth, on all aspects of the environment and ecology, with the purpose of promoting conservation of nature and natural resources.

Our website:

www.cpreec.org / www.journalcpreec.in